• Title/Summary/Keyword: Steam Drum

Search Result 46, Processing Time 0.024 seconds

Washing Efficiency of Drum Washing Machine Using Steam Jet System (스팀분사 방식을 사용한 스팀 드럼세탁의 세탁성능)

  • Jung, Sun-Young;Jang, Jeong-Dae;Park, Seok-Kyu;Jeong, Seong-Hae
    • Fashion & Textile Research Journal
    • /
    • v.8 no.1
    • /
    • pp.134-138
    • /
    • 2006
  • The washing efficiency of two types of washing machine- drum(drum washing) and drum using steam jet system(steam drum washing) was studied. The purpose of this paper is to clarify the performance of new steam drum washing. The relationship between washing temperature and washing efficiency(reflectance(%)) by soil removal, and that between washing temperature and electric energy consumption, Fabric damage evaluated by Danish wear method, Fabric shrinkage(%) during laundering were investigated, and compared with those in drum washing machine. Washing efficiency of steam drum washing according to washing temperature is better than that of drum washing. Electric energy consumption and fabric damage in steam drum washing are lower than those of drum washing. Fabric damage increased as washing temperature increased. Shrinkage of fabrics in steam drum washing and drum washing are about same. Therefore, we assumed that in the case of steam drum washing using steam jet system, washing efficiency remarkably increased, and fabric damage decreased, even with a lot of saving in given electric energy and water used.

STEAM DRUM DESIGN FOR A HRSG BASED ON CFD (수치해석을 이용한 HRSG(Heat Recovery Steam Generator) 증기 드럼 설계)

  • Ahn, J.;Lee, Y.S.;Kim, J.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.67-72
    • /
    • 2011
  • HRSG (Heat Recovery Steam Generator) is a boiler to recover heat from the exhaust gas of an engine and to generate steam for more power generation or process. For the HRSG, water-tube type boiler is commonly adopted to accommodate the working pressure or capacity requirement of the system. The water-tube type boiler has a steam drum to separate steam from the water-steam mixture supplied from the evaporator tube (riser). The drum should be sized properly to separate the steam by the gravity and auxiliary internals, such as a demister, which are installed to filter the steam. To size the steam drum and to estimate the filter efficiency of drum internals, the velocity distribution inside the drum needs to be identified. In the present study, a series of CFD has been conducted to find the velocity distributions inside steam drums for conventional HRSGs and water-tube type industrial boilers. The velocity distributions obtained from the simulation have been normalized and a correlation to predict them has been found. The correlation is applied to the steam drum design by determining a proper position of a demister to show proper separation performance.

An Experimental Study on the Defect Detection for the Steam Heating Drum Journal (증기 가열 드럼 저널부의 결함 검출에 대한 실험적 연구)

  • Suh, Nam-kyu;Chang, Tae-Hyun;Lee, Jae-do
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.69-82
    • /
    • 2004
  • Recently, in the food, paper, steel and plastic industries, plate or sheet type products have been produced by the rolling drum. Steam heating drums are introduced into plastic products facilities in order to keep the density, microstructure, and strength of material uniformly. The drum journal can not help being concentrated by stresses due to the bending and torsion. Especially the drum, heated by high pressure steam, might be exposed in the steam leakage accident. First of all, the stresses on the steam drum journal are to be analyzed, and a case study proper to the subject was performed with a scraped journal, in order to investigate the failure characteristics as well as the initiation and propagation of fatigue cracks, and most probable circumstances of crack initiation. As the result of this study, it is suggested that newly installed drum journal be thoroughly inspected at the next periodic maintenance intervals for evidence of cracking, the microstructure examination and hardness measurements to prevent steam drum from the failure accident.

  • PDF

Theoretical Analysis of the Characteristics of Heat Transfer in Cylinder Drum for Paper Dryer (제지건조기용 실린더드럼에서 열전달특성에 관한 이론적 분석)

  • Lee, Ki-Woo;Chun, Won-Pyo;Lee, Kye-Jung;Jung, Seok-Pil
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2082-2087
    • /
    • 2008
  • The heat transfer process from steam to web through the cylinder drum consists of the thermal resistance by condensate thickness. thickness of shell, and the contact resistance between cylinder and web. The most thermal resistance in conventional cylinder drum dryer is generated by condensate, which is increased by the increase on revolution per minute(RPM). Therefore, the increase of RPM for the production enhancement results in the more thermal resistance, and eventually RPM is restricted. In this study, the theoretical analysis on the characteristics of heat transfer in cylinder drum for paper dryer was performed in the stationary state of steam in drum. The overall heat transfer coefficient, steam quantity and heat transfer quantity were predicted by diameter and length of drum, condensate thickness, revolution per minute and steam temperature for experimental apparatus design.

  • PDF

Development of Three-dimensional Thermo-fluid Numerical Model for Steam Drum of a Basic Oxygen Furnace (순산소 전로의 증기드럼 내의 3차원 열 유동 해석모델 개발)

  • Jeong, Soo-Jin;Moon, Seong-Joon;Jang, Won-Joon;Kho, Suntak;Kwak, Hotaek
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.479-486
    • /
    • 2016
  • The efficient steam drum should be required to reduce carbon oxide emissions and heat recovery in oxygen converter hood system. However, steam generation is limited to the time of the oxygen blowing period, which is intermittent or cyclical in operation of steel-making process. Thus, steam drum should be optimized for an effective steam generation during the oxygen blowing portion of the converter cycle. In this study, a three-dimensional computational fluid dynamics (CFD) model has been developed to describe the impacts of changing various operating conditions and geometric shape on thermo-fluid characteristics and performance of the steam drum. This model encompasses not only fluid flow and heat transfer but also evaporation and condensation at the interfacial surface in the steam drum by using VOF (Volume of Fluid) method. To validate the prediction performance of this model, comparison of the steam flow rate between numerical and experimental result has been performed, resulting in the accuracy of the relative error by less than 3.2%.

Modelling and Verification of Once-Through Subcritical Heat Recovery Steam Generator (관류형 아임계압 배열회수보일러의 열성능 모델링과 검증)

  • Lee, Chae-Soo;Choi, Young-Jun;Kim, Hyun-Gee;Yang, Ok-Chul;Chong, Chae-Hon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1692-1697
    • /
    • 2004
  • The once-through heat recovery steam generator is ideally matched to very high temperature and pressure, well into the supercritical range. Moreover this type of boiler is structurally simpler than drum type boiler. In drum type boiler, each tube play a well-defined role: water preheating, vaporization, superheating. Empirical equations are available to predict the average heat transfer coefficient for each regime. For once-through heat recovery steam generator, this is no more the case and mathematical models have to be adapted to account for the disappearance of drum type economizer, boiler, superheater. General equations have to be used for each tube of boiler, and actual heat transfer condition in each tube has to be identified.

  • PDF

Fuzzy control of drum level of boiler in thermal power plant (화력발전소 보일러 드럼 수위 퍼지 제어)

  • 변승현;박두용;김은기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.195-198
    • /
    • 1996
  • The control objective of drum level of boiler in thermal power plant is to maintain drum level at constant setpoint regardless of disturbance such as main steam flow. The initial response of the drum level loop process is in a direction opposite to the final response. The drum level loop shows inverse response when the power is changed abruptly. We adopt fuzzy controller using knowledge base considering system dynamics for controlling drum level. Finally, the simulation result using the digital simulator for boiler system in Seoul Power Plant Unit 4 shows the validity of fuzzy controller.

  • PDF

The improvement for steam temperature control at Boryung bituminous coal-fired drum boiler type thermal power plant (유연탄연소 드럼타입 보일러를 채택한 발전프랜트의 효율적 온도제어에 관한 연구)

  • 류홍우;황재호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.693-696
    • /
    • 1988
  • This paper is investigated on the improvement for steam temperature control at Boryung coal-fired drum boiler type thermal power plant. The steam temperatur control has been mainly operated by the feedback controllers. Automatic controllers are bounded and difficult. Because boiler system is nonlinear and the system time delay is very large. Optimal regulators including predictive feedforward and differentiate control are synthesized and some improved output results are presented.

  • PDF

A Feasibility Study on Adopting Sliding Pressure Operation for Drum Type Boiler

  • Baek, SeHyun;Kim, HyunHee;Park, SangBin;Kim, YoungJoo;Park, Hoyoung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.403-407
    • /
    • 2016
  • In general, drum-type boilers are designed for base load duty and applied under constant pressure operation mode. Recently, however conditions often occur that even drum-type boilers have to operate at partial load conditions. A feasibility study on adopting the sliding pressure operation for drum-type boiler was conducted, and corresponding performance changes and effects on the equipment were analyzed by utilizing a process simulation model. As a result, the conclusion was reached that drum type boilers are able to adopt the sliding pressure operation and can improve of net efficiency at part load operation in spite of the Rankine cycle efficiency reduction due to the decreases in main steam pressure. Because of thank to improvement of high pressure turbine stage-1 internal efficiency and power savings of boiler feed water pump. The sliding pressure operation is advantageous in terms of stress level relief for boiler tube as well as maintaining the rating steam temperature at part load condition. However, cautions are required because the drum boilers have poor dynamic response characteristics which may get worse during the sliding pressure operation.