• 제목/요약/키워드: Steady-state error analysis

검색결과 148건 처리시간 0.025초

CNC 밀링머신 이송장치의 오차유형 및 정상상태 오차해석에 의한 제어기 설계 (Controller Design by Error Shape and Steady-State Error Analysis for a Feed Drive System in CNC Milling Machine)

  • 이건복;길형균
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.52-60
    • /
    • 2005
  • This paper deals with the position control fur a feed drive system in CNC milling machine, which utilizes a modified error signal for the elimination of steady-state error. A linear time-invariant (LTI) system has consistent properties in response to standard test signal inputs. Those also appear in an error curve acquired from the response. From such properties, constructed is an error model for the position control of the feed drive. And then added is the output of the error model to the current error signal. Consequently the resulting proportional control system brings performance improvement in view of the steady-state error. The effectiveness of the proposed scheme is confirmed through simulations and experiments.

단순 FLC의 정상상태오차 해석 (Analysis of Steady State Error on Simple FLC)

  • 이경웅;최한수
    • 제어로봇시스템학회논문지
    • /
    • 제17권9호
    • /
    • pp.897-901
    • /
    • 2011
  • This paper presents a TS (Takagi-Sugeno) type FLC (Fuzzy Logic Controller) with only 3 rules. The choice of parameters of FLC is very difficult job on design FLC controller. Therefore, the choice of appropriate linguistic variable is an important part of the design of fuzzy controller. However, since fuzzy controller is nonlinear, it is difficult to analyze mathematically the affection of the linguistic variable. So this choice is depend on the expert's experience and trial and error method. In the design of the system, we use a variety of response characteristics like stability, rising time, overshoot, settling time, steady-state error. In particular, it is important for a stable system design to predict the steady-state error because the system's steady-state response of the system is related to the overall quality. In this paper, we propose the method to choose the consequence linear equation's parameter of T-S type FLC in the view of steady-state error. The parameters of consequence linear equations of FLC are tuned according to the system error that is the input of FLC. The full equation of T-S type FLC is presented and using this equation, the relation between output and parameters can represented. As well as the FLC parameters of consequence linear equations affect the stability of the system, it also affects the steady-state error. In this study, The system according to the parameter of consequence linear equations of FLC predict the steady-state error and the method to remove the system's steady-state error is proposed using the prediction error value. The simulation is carried out to determine the usefulness of the proposed method.

입력관측기의 정량적 성능지표 (II) -정상상태 해석- (A Quantitative Performance Index for an Input Observer (II) - Analysis in Steady-State -)

  • 정종철;이범석;허건수
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2067-2072
    • /
    • 2002
  • The closed-loop state and input observer is a pole-placement type observer and estimates unknown state and input variables simultaneously. Pole-placement type observers may have poor performances with respect to modeling error and sensing bias error. The effects of these ill-conditioning factors must be minimized for the robust performance in designing observers. In this paper, the steady-state performance of the closed-loop state and input observer is investigated quantitatively and is represented as the estimation error bounds. The performance indices are selected from these error bounds and are related to the robustness with respect to modeling errors and sensing bias. By considering both transient and steady-state performance, the main performance index is determined as the condition number of the eigenvector matrix based on $L_2$-norm.

Robust Stability Condition and Analysis on Steady-State Tracking Errors of Repetitive Control Systems

  • Doh, Tae-Yong;Ryoo, Jung-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.960-967
    • /
    • 2008
  • This paper shows that design of a robustly stable repetitive control system is equivalent to that of a feedback control system for an uncertain linear time-invariant system satisfying the well-known robust performance condition. Once a feedback controller is designed to satisfy the robust performance condition, the feedback controller and the repetitive controller using the performance weighting function robustly stabilizes the repetitive control system. It is also shown that we can obtain a steady-state tracking error described in a simple form without time-delay element if the robust stability condition is satisfied for the repetitive control system. Moreover, using this result, a sufficient condition is provided, which ensures that the least upper bound of the steady-state tracking error generated by the repetitive control system is less than or equal to the least upper bound of the steady-state tracking error only by the feedback system.

Analysis of Proportional Control for Grid Connected Inverter With LCL Filter

  • Windarko, Novie Ayub;Lee, Jin-Mok;Choi, Jae-Ho
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.247-249
    • /
    • 2008
  • There are many types of grid-connected inverter controllers; Synchronous Reference Frame (SRF)-based controller is the most popular methods. SRF-based controller is capable for reducing both of zero-steady state error and phase delay. However, SRF-based controller has a complex algorithm to apply in real application such as digital processor. Resonant controller is also reduced zero-steady state error, but its transfer function has a high order. In this paper, a simple proportional control is applied for grid connected inverter with LCL filter. LCL filter is a third order system. Applying a simple proportional controller is not increased the order of closed loop transfer function. By this technique, the single phase model is easily obtained. To reduce steady state error, proportional gain is set as high as possible, but it may produce instability. To compromise between a minimum steady state error and stability, the single phase model is evaluate through Root Locus and Bode diagram. PSIM simulation is used to verify the analysis.

  • PDF

비례적분+이중적분 제어기를 이용한 정상상태 응답 개선 (Improvement of Steady State Response Using PI+Double Integral Controller)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권3호
    • /
    • pp.24-31
    • /
    • 2016
  • The performance characteristics of a dynamic control system are evaluated according to the transient and steady-state responses. The transient performance is the controllability of the output for the tracking of the reference or the ability to reduce or reject the effects of unwanted disturbances; alternatively, the steady-state performance is represented by the magnitude of the control error at the steady state. As the effects of the two performances on each other are reciprocal, a controller design that shows a zero steady-state error for the ramp input is uncommon because of the challenge regarding the achievement of an acceptable transient response. This paper proposes a PI+double-integral controller for the elimination of the steady-state error for the ramp input while a sound transient performance is maintained. The control-gain design procedure is described by the second-order response for the step input and the response of the error dynamics for the ramp input. The PI+double-integral controller is designed for the first-order transfer function that is derived from a system identification with the open-loop experiment data of the dc-motor. The simple structure of the proposed controller enables the adoption of a low-end microcontroller for the implementation of a real-time control. The experiment results show that the control performance is as effective as that of the simulation analysis for the operating point of linear system; furthermore, the PI+double-integral controller can be conveniently applied to the control system, which is desirable for the improvement of the steady-state error.

DC - DC 콘버어터의 다출력화에 따른 정상특성 및 안정성 해석 (Steady-State and Stability Analysis of Multioutput DC-DC Converter)

  • 김능수;이윤종;김희준
    • 대한전기학회논문지
    • /
    • 제37권8호
    • /
    • pp.534-539
    • /
    • 1988
  • The dynamic chatacteristics and stability including steady state characteristic of the currentfed DC-to-DC converter with multiouput, which has a considerable advantage about the multioutut circuit,are analyzed in this paper. It is performed by using the steady state averaging method. As result, we know that the error, which is caused by secondary winding resistance of the transformer, exists between the two outputs in the steady state characteristics. Furthemore, it is verified that the current-fed DC-to-DC converter has also excellent stability in the multioutput application.

  • PDF

실측실험과 3차원 정상상태 열전달 해석을 통한 발열유리의 온도 및 전열량 분석 (Analysis of Temperature and Total Heat of Heated Glass through Experimental Measurement and Three-Dimensional Steady-State Heat Transfer Analysis)

  • 이도형;윤종호;오명환
    • KIEAE Journal
    • /
    • 제15권1호
    • /
    • pp.111-116
    • /
    • 2015
  • Heat loss from windows and condensation occuring on its surface due to its lower insulation value causes much discomfort to occupants. In this study, Heated glass was used to make a basic study on prevention of condensation on glass surface for its heating functionality through experimental measurement and simulation analysis of total heat flux on the interior and exterior surface of glass. Error between experimental results and three dimensional steady-state heat transfer analysis were caused firstly, beacuse in the experimental chambers, cold chamber and steady temperature and humidity chamber, air temperature setting was not constant but rather ON/OFF control, and secondly, due to error rate in heat flux meter due to heat flux direction even in stable conditions.

입력 전력 신호와 결정지향 오차 신호를 이용한 가변 스텝 크기를 가지는 MSAGF-MMA 적응 블라인드 등화 알고리즘의 성능 분석 (Performance Analysis of MSAGF-MMA Adaptive Blind Equalization Algorithm with Variable Step Size Using Input Power Signal and Decision-Directed Error Signal)

  • 정영화
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권3호
    • /
    • pp.53-58
    • /
    • 2020
  • 본 논문은 입력 전력 신호와 결정지향 오차 신호에 따라 스텝 크기가 변하는 가변 스텝 크기를 가지는 MSAGF-MMA의 성능 분석에 관한 것이다. 제안한 알고리즘은 변형된 Stop-and-Go 알고리즘으로 부터 얻어진 이진 플래그를 가지는 MMA에 스텝 크기가 입력 신호의 변동에 영향을 덜 받도록 함으로써 정상상태로의 수렴 속도를 안정하게 높일 수 있는 입력 전력 신호에 따라 변하도록 하였다. 그와 동시에 정상상태에서 잔류 오차가 작아질 수 있도록 결정지향 오차 신호에 따라 스텝 크기가 가변될 수 있도록 하였다. 컴퓨터 모의실험 결과, 제안한 알고리즘이 MMA 및 MSAGF-MMA와 비교하여 정상상태로의 수렴 속도 면에서 뿐만 아니라 정상상태에서의 잔류 ISI와 averaged-MSE 등의 평가에서 매우 뛰어난 성능을 가짐을 확인하였다.

변형된 디지탈 Costas loop에 관한 연구 (II) 잡음이 있을 경우의 성능 해석 (Analysis of Modified Digital Costas Loop Part II : Performance in the Presence of Noise)

  • 정해창;은종관
    • 대한전자공학회논문지
    • /
    • 제19권3호
    • /
    • pp.37-45
    • /
    • 1982
  • 본 논문은 변형된 디지탈 Costas loop에 관한 논문으로서 제1부의 계속이다. 본 제2부 논문에서는 시스템에 잡음이 있을 경우 그의 성능을 해석하였다. 입력신호가 white Gaussian 잡음이 첨가되면 고려되는 DPLL의 noise process는 phase error detertor의 tan-1(·)함수에 의해서 Rician이 됨을 보였다. 이 경우 Chapman-Kolmogorov 방정식을 수치적으로 풀므로써 1차와 2차 loop phase error의 steady state probability density함수, mean 및 variance를 얻었으며 이 결과를 컴퓨터 시뮬레이tus에 의해서 입중하였다.

  • PDF