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Analysis of Modified Digital Costas Loop
Part II : Performance in the Presence of Noise
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Abstract

This paper is a sequel of the Part I paper[” on the modified digital Costas loop. In this
Part II we analyze the performance of the system in the presence of noise. It is shown that,
when the input signal is corrupted by additive white Gaussian noise, the noise process in
the loop becomes Rician as a result of the tan'l(-') function of the phase error detector.
Steady state probability density functions of phase errors of the first- and second-order
loops have been obtained by solving the Chapman-Kolmogorov equation numerically. Also,
the mean and variance of phase error in the steady state have been obtained analytically,
and are compared with the results obtained by computer simulation.

1. Introduction

In part 1 of this paper[” we introduced a
new type of digital phase-lock loop (DPLL)
called the modified digital Costas loop. This
DPLL is composed of a 90° phase shifter, two
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samplers, a phase error detector with the tan™t
(+) characteristic, a digital loop filter, and a
digital clock. This loop is characterized by a
linear difference equation which has a mod-2n7
feature. Unlike other DPLL’s, this system has
a unique property in that the phase error
detector characteristic becomes linear as »
result of insertion of tan™ (+) function in the
loop. Assuming that the input signal was
noiseless, we analyzed the first- and second-
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order loops by the phase plane technique.
Locking ranges were obtained for different
cases, and oscillation and false lock phenomena
were observed for some initial conditions.

In the present study we investigate the per-
formance of the same DPLL in the presence
of noise based on the Chapman - Kolmogorov
equation.  Steady state probability density
functions (pdf’s) and variances of phase error
are obtained for the first- and second-order
loops. When the input signal is corrupted by
band-passed additive white Gaussian noise, the
noise process in the loop becomes Rician as
a result of the tan™!(+) function of the phase
error detector. This property will be discussed
in detail.

Analyses of DPLL’s in the presence of
noise have been done by several researchers.
A binary quantized DPLL that uses a sequential
loop filter was studied by Cessna and Lavy.[zl
Weinberg and Liul3] analyzed a DPLL original-
ly proposed by Gill and Gupta[“ using the
Chapman-Kolmogorov equation. Also, Lindsey
and Chie investigated the acquistion behavior of
a first-order DPLL using the Chapman-Kolmo-
gorov equation.[sl Recently, D’Andrea and
Russo analyzed a first-order nonuniform multi-
level quantized DPLL in the presence of phase-
and frequency signal plus Gaussian noise.!®?

Following this introduction, we discuss
the probability distribution of phase error and
the difference equation of the system in Sec-
tion II. In Section III we analyze the first-
order modified digital Costas loop by using the
Chapman-Kolomogorov equation. In this sec-
tion we consider the steady state pdf, mean and
variance of phase error. In Section IV we
extend the analysis to the second-order loop.
Finally, we draw conclusions in Section V.

II. Phase Error Stasistics and System Equation

The modified digital Costas loop is shown
in Fig. 1. When the input signals to the sampl-
ers 1 and 2, x(t) and y(t), are sampled at the
kth sampling instant t(k), the sampled values
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are given respectively by

x(k) =+/2P sing(k) + n(k) ¢
y(k) =+/2P_ cosd(k) +n'(k), (2
where

#(k) D wot(k) + 8(k).

INCOMING _
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Fig. 1. Block diagram
Costas loop.

of modified digital

Here Pc is the power of information-bearing
signal s(t); wy is free-running frequency of the
digital clock; 6(t) [Aw-t+fg] is the phase
process of s(t); Aw is the initial frequency
offset; and 6y is the initial phase offset. The
noise process {n(k)} is assumed to be a station-
ary and band-passed additive white Gaussian
random process with zero-mean and variance
of 0%, and {n'(k) } is the 90° phase-shifted
noise process of n(k) . Since the loop band-
widih of DPLL is much narrower than the in-
put bandwidth, the noise process n(k) can be
approximated by an independent and identical-
ly distributed Gaussian process.I®] The same
is true for{ n'(k) }!”) Note that n(k) and n’(k)
are mutually independent at a given time index
k.[7]
The output of the phase error detector,
e(k), is
_ -1 x(k)

e(k) = tan [y(k)] . 3)
It can be shown that the pdf pe(e) of phase
error signal e(k) is given by

1 o?
Po(e) = Py exp(—7)

+ acos(e-¢)
2n
. f acos(e-@)

exp[— —; a?sin’(e-9)]

exp(-w?/2) dw, 4)
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where the parameter a2 /' ET’Z/U) represents
the input signal-to-noise ratio (SNR). In (4)
we have omitted the time index k for con-
venience. Detailed derivation of (4) may be
found in Appendix. It is to be noted that the
above pdf of the phase error signal e(k) is
Rician with its mean occurring at e(k) = ¢(k).
Since the phase error ranges from -m to m,
the pdf Pe(e) must also vary from e = -7 to
e = m. The phase error signal e(k) can be de-
composed into the mean term ¢(k) and the
random variable n(k) as

e(k) = ¢(k) + n(k). (5)

In (5) one can interprete that ¢(k) is the phase
error signal at time t(k) when no noise is
present, and n(k) is the phase error noise pro-
cess having Rician distribution with zero
mean. The range of e(k) must be considered
in the interval (-m, ) in the mod-27 sense.
Since n(k) and n'(k) are mutually independent
white Gaussian noise processes, respectively,
the phase error noise samples n(k)'s are also
mutually independent for different k. The pdf
Pn(n) obtained from (4) and (5) is plotted in
Fig. 2 for various input SNR’s.
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Fig. 2. Probability density function of phase
error noise n(k).

The system equation describing the loop
behavior in the presence of noise can easily be
obtained from the noiseless case!] as

¢(k+1) = ¢(k) - w * D(z) * [$(k)+n(k)]

ron B0 (6)
Wo

where w(=wp+Aw) is the frequency of input
signal, and D(z) is the transfer function of the
digital loop filter. It is interesting to compare
(6) with the corresponding equation of Gill
and Gupta’s DPLL!*! that is represented by a
sinusoidal nonlinear difference equation as

¢(k+1) = $(k) - w * D(2)[V/2P, sing(k)tn(k)]
+2omo 7

The system equation (6) of the loop under
study is different from that of Gill and Gupta’s
in that +/2P_ sing(k) is substituted by (k)
and Gaussian noise n(k) is replaced with Rician
noise n(k). Therefore, the behavior of the
present loop is characterized by a mod-2m
linear difference equation rather than a si-
nusoidal nonlinear equation. In the present
system the phase error signal must be con-
sidered in the interval ‘(-m, ).

III. Analysis of First-Order Loop

1. Steady State pdf of Phase Error

When noise is present in the first-order loop,
the system equation may be written from (6)
as

P(k+1) = (1-wK) ¢(k) + 2m(w-1) - wK *n(k),
(8)

where K is a constant. For convenience, from
now on we shall assume the modulo 27 process
without mentijoning it. Obviously, one can
regard this difference equation as a first-
order Markov process. Accordingly, the pdf of
¢(k) can be found from the following Chap-
man-Kolmogorov equation;

Py (8/60) = J ai(@/2) py(z/o) dz,  (9)
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where ¢g is initial phase error, py(@/@o) is
the pdf of ¢(k) given ¢(0) = ¢o, qk(¢/z) is the
transition pdf of ¢(k+1) given @(k) = z. As
mentioned before, the noise term wKn(k) has
Rician distribution with zero mean, and its
range is in the interval of mod-27[-wKm,
+wK7] because phase error takes values in the
interval (-w, w). Therefore, qk(¢/z) has Rician
distribution of which the range is in the interval
of mod-27[-wKrH1-wK)z+2m(w-1), wKrH1-
wK)z+2m(w-1)]1, and the mean is located at
¢ = (1-wk)z + 2m(w-1). Accordingly, q,(¢/2)
is represented as

2
a8/) = — + 5 expl5)

27
&9
1 cos( m)
L L K
wkK 27
¢
o?sin?(—2)
e exp(- ——2———) .
-0
o cos( m ) w?
J WK exp(- —) dw,
- 2
(10)
where ¢ = (1-wK)z + 2a(w-1) and o = ' 2PC.
o

From (9) the stady state pdf p(¢) satisfies the
integral equation

p(@) =/ a(¢/2)p(@) oz, (an

where the time index k has been dropped, and
q(¢/z) is given by (10). We obtain the steady
state pdf p(¢) by solving (11) numerically.
When we compute the steady state pdf numeri-
cally, we must consider the range of pdf’s at
the intermediate steps in mod-27.

Simulation results along with calculated
results are shown in Fig. 3 for various para-
meter values. Simulation was performed in
the following way. First we segmented the
interval (-m, m) into L(=100) pieces. Second, we
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Fig. 3. Steady state pdf’s of phase error of the
first-order loop for various cases (SNR=
7dB). (Solid line is the numerical
result and dotted points are the simula-
tion results.)

(@ w=1, K=07
(b)) w=09,K=0.8

generated Rician noise. Rician noise Nr can

easily be generated from Gaussian noise Ng

since it can be shown (see Appendix) that

N, = tan™ (ﬁﬁg—) where the power of N can

£

be set to a value one desires. Third, from(8)
we computed M(=1000) phase error points,
determined to which each point belongs among
the L pieces, and then counted the number of
phase error points in each segment. Lastly, we
computed the probability density using the
results from the third step. In the above
process, the larger L and M, we can obtain the
better results.

2. Steady State Mean and Variance

Let us now consider the steady state mean
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and variance of phase error,
Taking expectation of both sides of (8) in
the steady state yields

E(ggy) = (1-wKIE(@ge) + 2m(w-1)

—~wK*E(n). (12)
Since E(n) =0, we have
_ 2n 1

E(¢ss) "X (l-z) (13)

Note that E(¢ss) must lie in the interval (-x, m).
Similarly, squaring both sides of (8) and then
taking expectation of each term in the steady
state, we have

E(¢? ) = (1-wK)? E (¢* ) +{2m(w>-D}?

+ W K*E(n?) + 4m(w-1)
* (1-wK) E($), (14)
and thus
E@%,) = g2 CE %{5—( E(n?). (15)

Consequently, the steady state variance VAR
(¢SS) is given by

—— theory
2k A& simulaton

VARIANCE (dB)

[ L I

P
1 2 3 4 5 678910

INPUT  SNR (aB)

Fig. 4. Variances of phase error vs. input SNR
of the first-order loop for various
parameter values.

(@ w=1, K=0.7
b)w=11,K=0.8
©)w=1, K=1.2

wkK
VAR = —"" . E(n?). ‘
(959 =< " E(n?) (16)
It is to be noted that VAR(¢SS) is a function

2
) o
of the input SNR(= 5y ) since E(1?) is a func-

tion of a. Variances of phase error together
with simulation results are shown for various
parameters in Fig, 4,

IV. Analysis of Second-Order Loop

We now analyze the second-order modified
digital Costas loop in the presence of noise. As
in Part I of the paper, we assume that the loop
filter of the system takes the form of a pro-
portional-plus-accumulation filter whose trans-
fer function D(z) is given by

D(z) + b
z)= —
AT

where a and b are constants.
1. Steady State Pdf of Phase Error

The system equation describing the loop
in the present case is from (6)

o(k+2) = [2-(atb)w] P(k+1) — (1-aw)P(k)
— (atb)wn(k+1) + awn(k). (17)

This form does not assure that the phase error
process is a Markov process. Therefore, we
write (17) in a set of first-order difference

equations as

x; (k+1) = [ 2-(atb)w] x; (k) — (1-aw) x5 (k)

+ awn(k) (18a)
X2 (k+1) = x4 (k) (18b)
o) =-(1+ f) x; (k) +x,(k).  (18¢)

Then, from the above equations the phase
error process can be regarded as a first-order
two dimensional Markov process. Accordingly,
to find the pdf of ¢(k), we first obtain the joint
pdf of x;(k) and x,(k) from the following
Chapman-Kolmogorov equation;
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" ™
Py(x1,%2) = f_ﬂ f_,,r qy(x1, X2/21, 23)

pk(Zl, zy/X10, X20)dzy, dz,,

(19)

where p(x, X2 /X10, X20) is the joint pdf of
X1 (k) and x,(k) given x;(0) = x;o and x,(0) =
X290, and qk(xl , X2/Z1, 27) is the transition joint
pdf of x;(k+1) and x,(k+1) given x;(k) = z;
and x,(k) = z;. Then, from (18¢), the pdf of
¢(k) can be found. Note that the transition
joint pdf qu(x;, x; /2, 22) is represented as the
product of Rician distribution of random
variable x, and a delta function §(x,-z;) (i.e.,
distribution of random variable x,). The range
of x; is in the interval of mod-2n[-amw+
[2-(atb)w]z; - (1-aw)z,, amw+[2-(atb)w]z,-
(l-aw)z,] and its mean is located at [2-(a+
b)w]lz,-(1-aw)z;. Hence, qk(xl, X,/zy, 23) is
represented as

Q(x1, Xa/21, 23) = [ « (o‘2
k\X1, X2/21, 23 e 2Trexp-E—)

X1-X1m
acos(

aw 27

) X1- X1m
a?sin? (—z5—
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difficult to solve (21) analytically, we obtain
the steady state pdf p(¢) by solving (20) and
(18c) numerically.

-exp(- 3

X1-X1m
aw

) L2

acos(

. exp(-vzi)dw]

—o0

< 8(x3-2y) (20)

where

Xim = [2-(atb)wlz; — (1-aw)z;, and a=
0

Noting that the steady state joint pdf p(x,, x3)
satisfies the integral equation

p(xi1, X2) = f_:,f_: a(x1, X2 /21, 22) p(241, 22)

le d12 s (21)

one can obtain the steady state pdf p(¢) of
phase error from (18c¢) and (21). Since it is

V2P,

Fig. 5. Steady state pdf of phase error of the
second-order loop (SNR = 7dB, w =1,
a=b=0.7)

In Fig. 5, simulation results that have been
obtained with (17) are shown along with
numerical results for different parameter
The simulation procedure was the

same as that used for the first-order loop.

values.

2.Steady State Mean and Variance

We now consider the steady state mean and
variance of phase error. Taking expectations
of both sides of (18) in the steady state, we
have

E(xl) =[2'(a+b)w] E(Xl) — (l-aw) E(X2)
+aw E(n) (22a)
E(x;) =E(x;) (22b)
E(gy) =-(1+-2) B(xi) +B() . (220)
Clearly, E(q)ss) becomes zero since E(n) = 0.
Now, squaring both sides of (18) and then

taking expectation of each term, we obtain in
the steady state

E(x;2)= [2-(a+b)w] 21 E(x,?)

+(1-aw)?E(x,?) + (aw)*E(n?)
- 2(l-aw) * [2-(atb)w] E(x1 *X3)
(23a)

E(x,2)=E(x;?) (23b)
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E(8? ) = (1+ 21 E(x, ) + E(xa?)
a

- 2(1+~:—)E(x1 “X3) . (23¢)

Also, taking expectation of both sides of the
product of (18a) and (18b) in the steady state,
we have

E(x; *X3) = [2-(a+b)w] E(x; ?)
- (1-aW)E(x;°x,) . (24)
Note that E(q)ss) = (0. Hence, from (23) and

(24), the steady state variance of the phase
error, 0313 , is given by
ss

afpss = E(¢%)).
= {[(a+b)? w? Haw)? ] (2-aw)~2aw(a+b)
w[2-(atb)w]} [ {aw((2-aw)? -
- 2~(atb)w? ]} - E(n?)
(25)

4}» —= theory
X simulation

VARIANCE (d8)

L) Al i)
374 5678910
INPUT SNR {aB)

s
! 2

Fig. 6. Variances of phase error of the second-
order loop.
@Qw=1, a=b=0.7
(b)w=1.1,a=b=0.7

In Fig. 6 variances of phase error in the steady
state are shown along with simulation results
for various values of the loop filter parameters.

It is seen that the analysis agrees excellently
with simulation, and that as in the case of
APLL’s, variance of phase error decreases as
the input SNR increases.

V. Conclusions

We have studied the performance of the
modified digital Costas loop in the presence
As a result of
having the tan™! (*) function instead of a multi-
plier in the phase error detector, the loop is

of additive Gaussian noise.

characterized by a linear difference equation
and the probability distribution of phase
We have obtained by
solving the Chapman-Kolmogorov equation
numerically the steady state probability distri-
butions of phase error of the first- and second-
order loops for different parameter values, and
compared those with simulation results. Also,
the steady state mean and variance of phase
error have been obtained analytically. The
results are in excellent agreement with simula-
tion results.

error becomes Rician.
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Appendix

Here we derive Eq. (4), the pdf Pe(e) of
phase error e(k). Since n(k) and n'(k) are
stationary, mutually independent Gaussian
noise processes, phase error signal e(k) given by
(3) may be considered as a stationary noise
process. For convenience, (1), (2) and (3) are
rewritten;

x=\/2?csin¢+n, (n
y =V2P, cos +n', (2)
e =tan”! [x/y], 3)

where we have omitted the time index k. Note
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that n and n’ are mutually independent Gaussian
random variables, and thus x and y are also
mutually independent Gaussian random vari-
ables. The means and the variances of the
random variables x and y are given, respective-
ly, by

E[x] =v/2P_ sing, E[y] =\/2Pc cosg
(A+la)
VAR[x] = VAR[y] = VAR[n] = ¢>. (A*1b)

The joint pdf f(x,y) of x and y is given by

1
f(x,y) = 21{102 exp[-;}—2 (x~/2P _ (sing)

+(y-2/2P cosp)® 1. (A*2)

Now, we wish to find the pdf of the random
variable e given by (3). Let e and € be written
in the following forms;

X =€sine (A-3a)
y =€cose. (A+3b)

To find the pdf of e, the joint pdf of e and €
must be found first. For this purpose, we
determine Jacobian J(x,y; e,e) using (A-+3)

as
ox Ox]
Jxy;ee)l ={— —| =e.
[ J(x,y; e.€)l !ae ae’ €
|
oy v
de Oe (A-4)

Therefore, the joint pdf g(e,e) of e and € is
given by

gle, €)= 277102 ~e*expl- 2—(172 {(ecos e-+/2P cosg)?
+ (esin e-+/2P_sing)? | ]

P
L -e+exp[-— sin® (e-¢)]
gt o2

1
-expl- Eye {e-\/2Pc cos(e—q))}2 1. (A-5)

Note that, since € represents a distance, it must
always be equal to or greater than zero. Inte-
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grating g(e,e) from zero to infinity with respect
to €, we obtain

P,(e) = f:g(e,e) de

1 ) J -
= - exp[- —SEsin“(e-¢)]-f €
270 a? 0

1 2
-exp[- P €~V/2P  cos(e-e) “]de

(A+6)
If we change variables as
wh SV
o
then,
€ =ow +\/§T’;—cos(e-¢) (A-7a)
de = odw . (A-7b)

Consequently, the lower limit of integration in
(A+6) is changed to — 2P, cos(e-¢)/o. Hence,
(A+6) may be written as

P
P.(e) = 7111- expl- ;2? sin’ (e-¢)]

V2P,

f d [w+ oc cos(e-¢)]
vV 2Pc cos(e-¢)
- 7]
sexp(-w? /2) dw
exp(-P /0*) V2P 0
= P + cos(e-¢)

P
-expl- —C2 sin? (e-¢)]
g

V2P
f . € cos(e-p)

—o0

exp(-w?/2) dw.(A*8)

Since a = \/2Pc/o, the pdf Pe(e) of the phase
error signal e(k) is represented as follows;
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_ exp(-a?/2) .
Pe(e) R — + Era cos(e-¢)
2.2
-a* sin“(e-
~expl——" 9
2
.J‘ﬁcos(e-cp) exp(-w?/a) dw, (A°9)
which is” Rician distribution given by (4).
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