• Title/Summary/Keyword: Steady state concept

Search Result 98, Processing Time 0.021 seconds

Modeling, Dynamic Analysis and Control Design of Full-Bridge LLC Resonant Converters with Sliding-Mode and PI Control Scheme

  • Zheng, Kai;Zhang, Guodong;Zhou, Dongfang;Li, Jianbing;Yin, Shaofeng
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.766-777
    • /
    • 2018
  • In this paper, a sliding mode and proportional plus integral (SM-PI) control combined with self-sustained phase shift modulation (SSPSM) for LLC resonant converters is presented. The proposed control scheme improves the transient response while preserving good steady-state performance. An averaged large signal model of an LLC converter with the ZVS modulation technique is developed for the SM control design. The sliding surface is obtained based on the input-output linearization concept. A system identification method is adopted to obtain the transform function of the LLC resonant converter, which is used to design the PI control. In order to reduce the inherent chattering problem in the steady state, the combined SM-PI control strategy is derived with fuzzy control, where the SM control is responsive during the transient state while the PI control prevails in the steady state. The combination of SSPSM and the SM-PI control provides ZVS operation, robustness and a fast transient response against step load variations. Simulation and experimental results validate the theoretical analysis and the attractive features of the proposed scheme.

Evaluation of Tunnel Face Stability with the Consideration of Seepage Forces (침투력을 고려한 토사터널 막장의 안정성 평가방법에 대한 고찰)

  • 남석우;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.193-200
    • /
    • 1999
  • Since Broms and Bennermark(1967) suggested the face stability criterion based on laboratory extrusion tests and field observations, the face stability of a tunnel driven in cohesive material has been studied by several authors. And recently, more general solution for the tunnel front is given by Leca and Panet(1988). They adopted a limit state design concept to evaluate the face stability of a shallow tunnel driven into cohesionless material and showed that the calculated upper bound solution represented the actual behavior reasonably well. In this study, two factors are simultaneously considered for assessing tunnel face stability: One is the effective stress acting on the tunnel front calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady state ground water flow. The model tests were performed to evaluate the seepage force acting on the tunnel front and these results were compared with results of numerical analysis. Consequently, the methodology to evaluate the stability of a tunnel face including limit analysis and seepage analysis is suggested under the condition of steady state ground water flow.

  • PDF

Effective Localized-Voltage Control Scheme using the Information from Pilot Bus (Pilot Bus의 정보를 이용한 효율적인 지역별 전압제어)

  • Song, Sung-Hwan;Yoon, Yong-Tae;Moon, Seung-Il;Lee, Ho-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.12
    • /
    • pp.505-513
    • /
    • 2006
  • One of the major reasons for recent blackout, like August 14, 2003 blackout in the US and Canada has been insufficient voltage/reactive power support. For the stable reactive power management, a new approach for the voltage monitoring and control structure is required in the market environment. This paper proposes the effective localized-voltage control scheme using the information from pilot buses at each zone. In this paper, the steady state voltage monitoring and control (SSVMC) is adopted and illustrated for the voltage control scheme during steady state because it is thought as the systemic algorithm to explain voltage profile phenomenon before and after contingencies. And the concept of electrical distance is applied to simultaneously achieve both clustering the voltage control zone, and selecting the pilot bus as the representative node at each control zone. Applying SSVMC based on the structure with clustering and pilot bus enables system operators to monitor and understand the system condition much more easily, to monitor and control the voltage in real-time more manageably, and to respond quickly to a disturbance. The proposed voltage control scheme has been tested on the IEEE 14-bus system with the numerical analysis to examine the system reliability and structure efficiency.

A Study on the Performance Analysis of Single-Phase Induction Motor Considering Asymmetrical Concept (비대칭성개념(非對稱性槪念)을 고려한 단상전원용유도전동기(單相電源用誘導電動機)의 특성해석(特性解析)에 관한 연구(硏究))

  • Lee, Il-Chun;Kim, Chul-Woo;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.5-9
    • /
    • 1989
  • In this paper, while 2-or 3-phase induction motor is driven with balance and no noise driving at dynamic and steady state condition. Single-phase induction motor is driven with pulsating torque except specific driving point. So we analyze the reason of producing pulsating torque with the view of unsymmetring concept. These results are applied to the design of high efficincy, high quality single-phase induction motor.

  • PDF

TOKAMAK REACTOR SYSTEM ANALYSIS CODE FOR THE CONCEPTUAL DEVELOPMENT OF DEMO REACTOR

  • Hong, Bong-Guen;Lee, Dong-Won;In, Sang-Ryul
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.87-92
    • /
    • 2008
  • Tokamak reactor system analysis code was developed at KAERI (Korea Atomic Energy Research Institute) and is used here for the conceptual development of a DEMO reactor. In the system analysis code, prospects of the development of plasma physics and the relevant technology are included in a simple mathematical model, i.e., the overall plant power balance equation and the plasma power balance equation. This system analysis code provides satisfactory results for developing the concept of a DEMO reactor and for identifying the necessary R&D areas, both in the physics and technology areas for the realization of the concept. With this system analysis code, the performance of a DEMO reactor with a limited extension of the plasma physics and technology adopted in the ITER design. The main requirements for the DEMO reactor were selected as: 1) demonstrate tritium self-sufficiency, 2) generate net electricity, and 3) achieve a steady-state operation. It was shown that to access an operational region for higher performance, the main restrictions are presented by the divertor heat load and the steady-state operation requirements.

Steady-State/Transient Performance Simulation of the Propulsion System for the Canard Rotor Wing UAV during Flight Mode Transition

  • Kong, Changduk;Kang, Myoungcheol;Ki, Jayoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.513-520
    • /
    • 2004
  • A steady-state/transient performance simulation model was newly developed for the propulsion system of the CRW (Canard Rotor Wing) type UAV (Unmanned Aerial Vehicle) during flight mode transition. The CRW type UAV has a new concept RPV (Remotely Piloted Vehicle) which can fly at two flight modes such as the take-off/landing and low speed forward flight mode using the rotary wing driven by engine bypass exhaust gas and the high speed forward flight mode using the stopped wing and main engine thrust. The propulsion system of the CRW type UAV consists of the main engine system and the duct system. The flight vehicle may generally select a proper type and specific engine with acceptable thrust level to meet the flight mission in the propulsion system design phase. In this study, a turbojet engine with one spool was selected by decision of the vehicle system designer, and the duct system is composed of main duct, rotor duct, master valve, rotor tip-jet nozzles, and variable area main nozzle. In order to establish the safe flight mode transition region of the propulsion system, steady-state and transient performance simulation should be needed. Using this simulation model, the optimal fuel flow schedules were obtained to keep the proper surge margin and the turbine inlet temperature limitation through steady-state and transient performance estimation. Furthermore, these analysis results will be used to the control optimization of the propulsion system, later. In the transient performance model, ICV (Inter-Component Volume) model was used. The performance analysis using the developed models was performed at various flight conditions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the turbine inlet temperature overshoot limitation as well as the compressor surge margin. Because the engine performance simulation results without the duct system were well agreed with the engine manufacturer's data and the analysis results using a commercial program, it was confirmed that the validity of the proposed performance model was verified. However, the propulsion system performance model including the duct system will be compared with experimental measuring data, later.

  • PDF

Introduction of Generator Unit Controller and Its Tuning for Automatic Generation Control in Korean Energy Management System (K-EMS)

  • Park, Min-Su;Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.42-47
    • /
    • 2011
  • Automatic generation control (AGC) is an important function for load frequency control, which is being implemented in Energy Management System (EMS). A key feature of AGC is to back up governors to enhance the performance of frequency control. The governor regulates system frequency in several to ten seconds, while the droop control concept results in steady-state control error. AGC is a supplementary tool for compensation of the steady-state error caused by the droop setting of the governors. As the AGC target is delivered to each generator as an open loop control target, the generator output is not guaranteed to follow the AGC target. In this paper, we introduce generating unit controller (GUC) control block, which has the purpose of enabling the generator output to track the AGC target while maintaining the governor performance. We also address the tuning methods of GUC for better performance of AGC in the Korea Energy Management System (K-EMS).

STEADY-STATE TEMPERATURE ANALYSIS TO 2D ELASTICITY AND THERMO-ELASTICITY PROBLEMS FOR INHOMOGENEOUS SOLIDS IN HALF-PLANE

  • GHADLE, KIRTIWANT P.;ADHE, ABHIJEET B.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.93-102
    • /
    • 2020
  • The concept of temperature distribution in inhomogeneous semi-infinite solids is examined by making use of direct integration method. The analysis is done on the solution of the in-plane steady state heat conduction problem under certain boundary conditions. The method of direct integration has been employed, which is then reduced to Volterra integral equation of second kind, produces the explicit form analytical solution. Using resolvent- kernel algorithm, the governing equation is solved to get present solution. The temperature distribution obtained and calculated numerically and the relation with distribution of heat flux generated by internal heat source is shown graphically.

Head Slider Designs Using Approximation Methods

  • Yoon, Sang-Joon;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.37-44
    • /
    • 2004
  • This paper presents an approach to optimally design the air bearing surface (ABS) of the head slider by using the approximation methods. The reduced basis concept is used to reduce the number of design variables. In the numerical calculation, the progressive quadratic response surface modeling (PQRSM) is used to handle the non-smooth and discontinuous cost function. A multi-criteria optimization problem is formulated to enhance the flying performances over the entire recording band during the steady state and track seek operations. The optimal solutions of the sliders, whose target flying heights are 12 nm and 9 nm, are automatically obtained. The flying heights during the steady state operation become closer to the target values and the flying height variations during the track seek operation are smaller than those for the initial one. The pitch and roll angles are also kept within suitable ranges over the recording band.

A Study on the Dynamic Stress Intensity Factor of Orthotropic Materials(I) (직교 이방성체의 동적 응력확대계수에 관한 연구(I))

  • 이광호;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.313-330
    • /
    • 1993
  • The propagating crack problems under dynamic plane mode in orthotropic material is studied in this paper. To analyze the dynamic fracture problems in orthortropic material, it is important to know the dynamic stress components and dynamic displacement components around the crack tip. Therefore the dynamic stress components of dynamic stress field and dynamic displacement components of dynamic displacement field in the crack tip of orthotropic material under the dynamic load and the steady state in crack propagation were derived. When the crack propagation speed approachs to zero, the dynamic stress component and dynamic displacement components derived in this study are identical to the those of static state. In addition, the relationships between dynamic stress intensity factor and dynamic energy release rate are determinded by using the concept of crack closure closure energy with the dynamic stresses and represented according to physical properties of the orthotrophic material and crack speeds. The faster the crack velocity, the greater the stress value of stress components in crack tip. The stress value of the stress component of crack tip is greater when fiber direction coincides with the crack propagation than when fider direction is normal to the crack propagation.