• Title/Summary/Keyword: Steady flow rig

Search Result 46, Processing Time 0.028 seconds

Three-dimensional Analysis of Flow Characteristics for Intake Valve Design (흡기밸브 형상에 따른 3차원 유동특성 해석)

  • 김득상;이상진;조용석;엄인용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.1-6
    • /
    • 2003
  • Steady flow bench test is a practical, powerful and widely used in most engine manufacturers to give a design concept of a new engine. In order to use steady data as a performance index, it is necessary to build some database, which can correlate the port characteristics with engine data. However, it is very difficult to investigate all port shapes with experimental tools. The steady flow scheme is relatively simple and its results are bulk ones such as flow rate and momentum of flow. Therefore a CFD code can be easily applied to the port evaluation. In this study, the steady flow test was simulated through three-dimensional analysis on intake port design for comparing with experimental data and confirming the feasibility of applying analytic method . for this purpose, the effect of valve curvature on flow rate was estimated by a CFD code. Numerical results were compared with those of real steady flow tests. As a result, the results of 3-D analysis were almost consistent with experimental data.

A Study on the Optimization of Cylinder Head Port Flow for Hyundai H21/32 Medium-Speed Diesel Engines (현대 H21/32 중속 디젤엔진 실린더 헤드포트 최적화 연구)

  • Kim, Byung-Yoon;Kim, Jin-Won;Ghal, Sang-Hak
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.806-811
    • /
    • 2001
  • Since the characteristics of combustion and pollutant in Diesel engines were mainly effected by the characteristics of in-cylinder gas flow and fuel spray, an understanding of those was essential to the design of the D.I. Diesel engines. The improvement of volumetric efficiency of air charging into combustion chamber is a primary requirement to obtain better mean effective pressure of an engine. Since parameters such as the air resistances in intake and exhaust flow passages, valve lift and valve shape influence greatly to the volumetric efficiency, it is very important to investigate the flow characteristics of intake and exhaust port which develops air motion in the combustion chamber. In this study, two approach methods were used for design intake and exhaust port; experiment and computation which were made by using steady flow test rig and commercial CFD code. This paper presents the results of an experimental and analytical investigation of steady flow through the prototype cylinder head ports and valves of the HHI's H21/32 HIMSEN Engine.

  • PDF

Analysis of in-cylinder steady flow for dual-intake-valve gasoline engine using single-frame particle tracking velocimetry (단일 프레임 입자 추적법을 이용한 흡입 2밸브 가솔린 기관의 실린더 내 정상 유동 해석)

  • Lee, Chang-Sik;Lee, Gi-Hyeong;Im, Gyeong-Su;Jeon, Mun-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.650-658
    • /
    • 1997
  • Analysis and control of intake charge motion such as swirl and tumble are very important factors in improving the gasoline engine performance. In this paper, single-frame PTV (particle tracking velocimetry) is used to investigate intake tumble patterns in a steady flow test rig of gasoline engine with dual-intake-valve and pent-roof combustion chamber. Intake tumble pattern is quantified in accordance with blockage ratio of TIV (tumble intensifying valve) with single- frame PTv.The view of the instantaneous 2-D velocity field gives a realistic understanding of in-cylinder flow field. Thus it is confirmed that PTV is a effective tool in engine design. In conventional port, two tumble structures appear clearly, and the larger one is observed under the exhaust valve side and the smaller is right below the intake valve side. The larger vorticity is observed in TIV port, thus it is concluded that TIV have an effect on intensified tumble motion in cylinder flow.

Development of the 3-D Bulk Motion Index for In-Cylinder Flow Induced by Induction System (II) - Based on the Steady Flow Rig Test Results - (흡기시스템을 통해 실린더로 유도되는 공기의 3차원 Bulk Motion Index 개발 (II) - 정상유동실험결과를 중심으로 -)

  • Yun, Jeong-Eui;Nam, Hyeon-Sik;Kim, Myung-Hwan;Min, Sun-Ki;Park, Pyeong-Wan;Kim, Ki-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1066-1073
    • /
    • 2006
  • Recently, because the variable induction systems are adopted to intake system, in-cylinder flow induced by induction system is very complex. Therefore it is very difficult to describe the in-cylinder bulk flow characteristics using the conventional swirl or tumble coefficient. In this study, in order to clarify the 3-D angular flow characteristics of in-cylinder bulk motion in the developing process of variable induction system, we introduced the new 3-D angular flow index, angular flow coefficient($N_B$) Finally, to confirm the index, we carried out the steady flow rig test for intake port of test engine varying valve lift on the test matrix.

The Effect of Intake Swirl Ratios on Combustion Performance in a Heavy-Duty LPG Engine (대형 LPG 엔진의 흡입 스월비에 따른 연소성능에 관한 연구)

  • 한병주;김창업;강건용;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.46-53
    • /
    • 2001
  • To optimize the intake flow condition in the heavy-duty LPG SI engine, five different swirl ratios of intake port were investigated experimentally by oil spot method, LDV and single cylinder engine test. The flow characteristics near the piston surface were observed by oil spot method and magnitudes of swirl flow were measured quantatively by LDV method in the steady flow rig. The engine performances of various swirl flow were also tested with the heavy-duty LPG SI single cylinder engine. In the results, high swirl ratio, above $R_s$=2.3, was not suitable to develope a stable flame kernel and to produce high engine performance. Especially it was more serious under lean burn conditions, since turbulence intensity was smaller than bulk flow though those are increased together. These results were also confirmed by LDV measurement and oil spot method. On the contrary, low swirl ratio($R_s$=1.3) is not good to propagate a flame since the turbulence intensity and bulk flow are vanished during compression stroke and low swirl ratio has too weak initial energy for stable combustion. Therefore, the of optimized swirl ratio f3r the heavy-duty LPG engine in this work was found around $R_s$=2.0.

  • PDF

Numerical analysis of flow characteristics with intake port and valve design (흡기포트 및 밸브 형상에 따른 정상 유동 특성)

  • Lee, Sang-Jin;Kim, Seong-Cheol;Kim, Duk-Sang;Ohm, In-Yong;Cho, Yong-Seok
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.921-927
    • /
    • 2001
  • Steady flow bench test is a practical, powerful and widely used test in most engine manufacturers to give a design concept of a new engine. In order to use steady data as a performance index, it is necessary to build some database, which can correlate the port characteristics with engine data. However, it is very hard to investigate all port and valve shapes with experimental tools. The steady flow scheme is relatively simple and its results are bulk ones such as flow rate and momentum of flow. Therefore a CFD code can be easily applied to the port evaluation. In this study, the steady flow test was simulated through two and three-dimensional analysis on intake port design for comparing with experimental data and confirming the feasibility of applying analytic method. For this purpose, the effect of valve curvature on flow rate was estimated by a CFD code. There results were compared with those of real steady flow tests. As a result, the 2-D analysis described the phenomena qualitatively well, and also the results of 3-D analysis were almost consistent with experimental data.

  • PDF

Characteristics of Flow Coefficients in an Engine Cylinder Head with a Quasi-steady Flow Condition by Continuous Variation of the Valve Lift (밸브 양정의 연속 변화에 의한 준정상 유동 조건에서의 엔진 실린더헤드 유량계수 특성)

  • Oh, Dae-San;Lee, Choong-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.22-27
    • /
    • 2010
  • Flow Coefficients of intake port in an engine cylinder head were measured by a newly designed flow rig. In measuring the flow coefficient with traditional method, the valve lift was manually varied by technician with adjusting a micrometer which is directly connected to the intake valve of the cylinder head. The cam shaft of the cylinder head is directly rotated by a step motor and the valve lift was automatically varied with cam shaft profile in the newly designed flow rig. The measurement of the flow coefficient was automated by rotating the cam shaft with the step motor. Automatic measurement of the flow coefficient could be safely measured by separating a technician from the noise and vibration of the traditional flow rig. Also, the automatic measurement of the flow coefficient reduce the measurement time and provide meaningful statistical data.

Analysis of In-Cylinder Steady Flow for Gasoline Engine Using Particle Tracking Velocimetry (입자추적법을 이용한 가솔린 기관의 실린더 내 정상유동 해석)

  • 정구섭;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.34-43
    • /
    • 2001
  • Analysis and control of intake charge motion such as swirl and tumble are very important to improve the performance of gasoline engines. In this paper, single frame double exposure PTV(particle tracking velocimetry) is used to investigate intake flow characteristic in a steady flow test rig of gasoline engine with 2-valve and pent-roof combustion chamber. To validate this PTV method, we confirmed reliability of this PTV method using chopper, and coaxial burner experiments. The velocity Held of intake flow is measured with the intake valve lift variation. It is shown that maximum flow velocity is increased and tumble flow become stronger than inverse tumble flow as valve lift increase.

  • PDF

Characteristics of In-cylinder Steady Flow using PIV for Different Intake Port Geometries in a 4-valve Gasoline Engine (PIV에 의한 4밸브 가솔린기관의 흡기포트 형상에 따른 정상유동 해석)

  • 조규백;전충환;장영준;강건용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.188-196
    • /
    • 1997
  • Many researchers have developed the measurement technique of in-cylinder flow characteristics and found the effect of intake port geometries on engine performance. The flow characteristics of four-valve cylinder head were examined in a steady flow rig for different intake ports. Tumble intensity of intake configurations with different entry angles were quantified with a tumble meter. The velocity and angular momentum distributions in the tumble adaptor were measured under steady conditions with PIV(Particle Image Velocimetry). We have obtained the results that flow structure becomes complicated by valve interference at low valve lift. As the valve interferences were reducing and the flow pattern changed to large vortex structure with tumble direction, intake ports with different entry angles have different tumble centers. Tumble eccentricity of intake port with low entry angle was large, so that the port had relatively much angular momentum compared to others which was expected to improve combustion performance.

  • PDF

An Experimental Study on Measurement of Flow Coefficient Using the Steady-Flow Test Rig (정상유동장치를 이용한 유량계수 측정에 관한 실험적 연구)

  • Park, Sang-Wook;Choi, Ik-Soo;Noh, Ki-Chol;Ryu, Soon-Pil;Yoon, Keon-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.423-429
    • /
    • 2012
  • Miller cycle is considered as an effective means to meet the regulation on Tier II and to reduce $CO_2$ emission. For this cycle, the amount of intake air supplied should be enough increased. Therefore, the intake system with minimized resistance for air flow is under consideration. In this study, the flow coefficients of intake valves were measured in order to obtain the basic data for the cycle simulation and intake port design. The flow coefficients were measured using the steady-flow test rig. As a test result for the poppet valve used the marine engine with medium speed, the flow coefficients are increased to about 0.62 with the valve lift. In addition it is confirmed that the flow coefficients have the characteristic value irrelevant to the S/B ratio.