• Title/Summary/Keyword: Steady Wave

Search Result 275, Processing Time 0.023 seconds

The Use of Hermite Cubic Element for Inviscid Convective Equations (비점성 대류 방정식의 계산을 위한 Hermite 3차 요소의 사용에 대한)

  • 김진환
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.99-106
    • /
    • 1993
  • The use of Hermite cubic element, as a possible finite element computation of transport equations containing shocks, has been invesigated. In the present paper the hermite cubic elements are applied to both linear and nonlinear scalar one and two dimensional equations. In the one dimensional problems, numerical results by the hermite cubic element show better than those by the linear element, and the steady state solution by the hermite cubic element yields result with good resolution. This fact proves the superiority of the hermite cubic element in space differencing. In two dimensional case, the results by the hermite cubic element shows a boundary instability, and the use of higher order time differencing method may be necessary for fixing the problem.

  • PDF

A Computational Study of the Supersonic Cavity Flow (초음속 Cavity 유동에 관한 수치해석적 연구)

  • Jung Sung-Jae;Gwak Jong-Ho;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.23-26
    • /
    • 2004
  • A computational analysis has been conducted to investigate the detailed flow structure inside a supersonic cavity. The free stream Mach number and Reynolds number are 1.83 and $6.02\times10^5$ respectively. In the present study, the depth and width of the cavity are changed to investigate the effect of the cavity dimensions. A fully implicit finite volume scheme is applied to solve the three-dimensional, steady, unsteady, compressible, Navier-Stokes equations. The computed results are validated with the previous experimental data available. The present computation provides reasonable predictions of the cavity flow, compared with experimental results. The obtained results show that a shock wave is generated in front of the downstream edge of the cavity and the dominant frequencies of the pressure oscillations inside the cavity were obtained.

  • PDF

A Study on Switching Characteristics of Active Clamp Type Flyback Converter with Synchronous Rectifier Driving Signals Controlling Auxiliary Switch (보조스위치가 동기정류기 구동 신호로 제어되는 능동 클램프형 플라이백 컨버터의 스위칭 특성에 관한 연구)

  • Ahn, Tae Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.21-26
    • /
    • 2018
  • In this paper, the switching characteristics of the active clamp type flyback converter, which is deemed suitable for the miniaturization of the external power supply for home appliance, were analyzed and the process of reducing the switching loss was explained. The active clamp type flyback converter operating in the DCM has confirmed that the surge voltage of the main switch does not occur and the turn-off / on loss of the switch do not occur in principle. Also, in the case of the switch for synchronous rectifier, it was showed that the switch current showed half-wave rectified sinusoidal characteristic, and the switching loss was reduced. The switching characteristics of the experimental results gathered from 120 W class prototype were compared with the theoretical waveform in the steady-state and it was confirmed that the power conversion efficiency of the active clamp type flyback converter was maintained high due to the reduction of the switching loss.

Estimation of Overflow-Induced Pressure and Velocity on a Mound-Type Sea Dike (월류 시 마운드형태 방조제에 작용하는 압력과 유속 산정)

  • Kim, Taehyung;Yeh, Harry;Kim, Sungwoung;Choi, Myoungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.3
    • /
    • pp.5-13
    • /
    • 2015
  • Wave overflow can cause a failure of sea dike structure. Based on the results of the field surveys on mound-type sea dike, the failure of vicinity of crown and the scouring of toe at the landward was revealed as the most representative failure example. One of the main factors related to this failure pattern is overflow-induced pressure and velocity. Thus, in this study the analytical equations which can determine the pressure and the velocity induced by overflow in sea dike were proposed and verified. To accomplish this, assumed that the flow is quasi-steady and irrotational, and concentric circular streamlines around the vicinity of crown and toe of the sea dike. Flow was assumed as critical state and Bernoulli equation was used to develop the equations that can determine the pressure and velocity at the vicinity of crown and toe of the sea dike. Using these equations, the pressure and the velocity were calculated in condition of various overflow depths and radiuses of circular streamline. Based on the calculation results, while a negative pressure was occurred at the vicinity of crown, a significant amount of positive pressure occurred at the toe. The existence of flow-induced shear stresses was also confirmed. In addition, the limitation of the proposed equations was discussed.

Experimental Study on Elastic Response of Circular Cross-section Slender Body to Forced Oscillation, Waves, and Current (복합 외력환경 중 원형 단면 세장체의 탄성응답에 관한 실험적 연구)

  • Park, Ji-won;Lee, Seung-Jae;Jo, Hyo-Jae;Hwang, Jae-Hyuk;Han, Sung-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.91-99
    • /
    • 2016
  • The global demand for oil and natural gas has increased, and resource development is moving to the deep sea. Floating and flexible offshore structures such as semi-submersible, spar, and FPSO structures have been widely used. The major equipment of floating structures is always exposed to waves, currents, and other marine environmental factors, which cause structural damage. Moreover, flexible risers are susceptible to an exciting force due to the motion of the floating body. The inline and transverse responses from the three-dimensional behavior of a floating structure occur because of various forces. Typical risers are made of steel pipe and applied in the oil and gas development field, but flexible materials such as polyethylene are suitable for OTEC risers. Consequently, the optimal design of a flexible offshore plant requires a dynamic behavior analysis of slender bodies made of the different materials commonly used for offshore flexible risers. In this study, a three-dimensional motion measurement device was used to analyze the displacements of riser models induced by external force factors, and forced oscillation of a riser was linked to forced oscillation under a steady flow and regular wave condition.

High Performance Adjustable-Speed Induction Motor Drive System Incorporating Sensorless Vector Controlled PWM Inverter with Auto-Tuning Machine-Operated Parameter Estimation Schemes

  • Soshin, Koji;Okamura, Yukiniko;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.99-114
    • /
    • 2003
  • This paper presents a feasible development on a highly accurate quick response adjustable speed drive implementation fur general purpose induction motor which operates on the basis of sensorless slip frequency type vector controlled sine-wave PWM inverter with an automatic tuning machine parameter estimation schemes. In the first place, the sensorless vector control theory on the three-phase voltage source-fed inverter induction motor drive system is developed in slip frequency based vector control principle. In particular, the essential procedure and considerations to measure and estimate the exact stator and rotor circuit parameters of general purpose induction motor are discussed under its operating conditions. The speed regulation characteristics of induction motor operated by the three-phase voltage-fed type current controlled PWM inverter using IGBT's is illustrated and evaluated fur machine parameter variations under the actual conditions of low frequency and high frequency operations for the load torque. In the second place, the variable speed induction motor drive system, employing sensorless vector control scheme which is based on three -phase high frequency carrier PWM inverter with automatic toning estimation schemes of the temperature -dependent and -independent machine circuit parameters, is practically implemented using DSP-based controller. Finally, the dynamic speed response performances for largely changed load torque disturbances as well as steady state speed vs. torque characteristics of this induction motor control implementation are illustrated and discussed from an experimental point of view.

Purification of Fructooligosaccharides Using Simulated Moving Bed Chromatography (Simulated Moving Bed 크로마토그래피를 이용한 프럭토 올리고당의 정제)

  • Oh, Nan-Suk;Lee, Chong-Ho;Koo, Yoon-Mo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.715-721
    • /
    • 2005
  • The SMB chromatography is used to obtain high purification of fructooligosaccharides (FOS), the mixture of kestose and nystose. SMB operation condition is usually determined by triangle theory or standing wave design when reactions do not occur within columns during experiment. Some of the reactions in columns may considerably affect experimental results. FOS can be hydrolyzed and converted into glucose and fructose during operation. To include the effect of reaction, the concentrations of each component at steady state after hydrolysis were used in simulation. The obtained simulation values are well matched with experimental results except sucrose. For sucrose, the experimental results were different from expected one due to the existence of an intermediate component. FOS is easily hydrolyzed and converted into glucose and fructose in more acidic condition and at higher temperature. Hydrolysis reaction can be prevented by the pretreatment of separation resin with NaOH as well as operation under lower temperature.

Analysis of Working Time at the Test Site of Southwest Offshore Wind Project in Korea Based on Weather Window (기상조건에 따른 서남해 해상풍력 실증단지 작업시간 분석)

  • Kim, Min Suek;Kim, Ji Young;Kwak, Ji Yeong;Kang, Keum Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.358-363
    • /
    • 2015
  • As a preparation process for successful establishment of demonstration offshore wind farm, analyses have been made for working time at the construction site where working time is defined as the time available for marine operation to take place under given weather conditions. Data used are hourly wave and wind data from met mast, HeMOSU-1, and 3 hour numerical model data from Korea Meteorological Administration (KMA). Seasonal results show the minimum working time during winter and moderate during autumn and spring. The most working time was seen during summer on average. Monthly analyses show the most working time in May, June, and August which was higher than the working time in July and September. Working time reaches at steady state and no significant change was seen above wave height of 1.5 m and wind speed of 8 m/s.

Study on Smart Cooling Technology by Acoustic Streaming Generated by Ultrasonic Vibration Using 3D PIV (3차원 PIV를 활용한 초음파 진동에 의해 발생된 음향 유동을 이용한 스마트 냉각법 연구)

  • Lee, Dong-Ryul;Loh, Byoung-Gook;Kwon, Ki-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1078-1088
    • /
    • 2010
  • In order to analyze the quantitative characteristics of acoustic streaming, experimental setup of 3-D stereoscopic PIV(particle imaging velocimetry) was designed and quantitative ultrasonic flow fields in the gap between the ultrasonic vibrator and heat source were measured. Utilizing acoustic streaming induced by ultrasonic vibration, surface temperature drop of cooling object was also measured. The study on smart cooling method by acoustic streaming induced by ultrasonic vibration was performed due to the empirical relations of flow pattern, average flow velocity, different gaps, and enhancement on cooling rates in the gap. Average velocity fields and maximum acoustic streaming velocity in the open gap between the stationary cylindrical heat source and ultrasonic vibrator were experimentally measured at no vibration, resonance, and non-resonance. It was clearly observed that the enhancement of cooling rates existed owing to the acoustic air flow in the gap at resonance and non-resonance induced by ultrasonic vibration. The ultrasonic wave propagating into air in the gap creates steady-state secondary eddy called acoustic streaming which enhances heat transfer from the heat source to encompassing air. The intensity of the acoustic streaming induced by ultrasonic vibration experimentally depended upon the gap between the heat source and ultrasonic vibrator. The ultrasonic vibration at resonance caused the increase of the acoustic streaming velocity and convective heat transfer augmentation when the flow fields by 3D stereoscopic PIV and temperature drop of the heat source were measured experimentally. The acoustic streaming velocity of air enhancement on cooling rates in the gap is maximal when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which is specifically 12 mm.

Application of a One-Dimensional Upwind Model for Natural Rivers (일차원 상류이송형모형의 자연하도에 대한 적용)

  • Kim, Won;Han,, Kun-Yeun;Woo, Hyo-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.5 s.154
    • /
    • pp.333-343
    • /
    • 2005
  • The upwind model is well known to simulate shockwaves, but it is rarely applied to natural rivers because of problems caused by the source terms. Although several methods have been developed to deal with the source terms, none of them has been applied to natural rivers. This paper deals with application of the upwind model to the natural river. An implicit upwind model is applied to a hypothetical irregular channel and a natural river with highly irregular bed, width, and hydraulic structures. Different types of the flows including steady-state flow, flood wave, dam-break wave, and bore are simulated to test accuracy and applicability of the implicit upwind model. It is proved that the model can simulate various types of flows in natural rivers with high accuracy and robustness.