• Title/Summary/Keyword: Steady State Creep Rate

Search Result 57, Processing Time 0.029 seconds

Creep Properties of Type 316LN Steel Welded by the SAW Method (SAW 법으로 용접된 Type 316LN 강의 크리프 성질)

  • Kim W.G.;Yin S.N.;Ryu W.S.;Yi Won
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.105-106
    • /
    • 2006
  • The creep properties have been evaluated for type 316LN stainless steel welded by the SAW method. The creep tests were conducted with different stress levels for both the base and weld metals at $550^{\circ}C\;and\;600^{\circ}C$. The results of the creep-rupture time of the weld metal did not show a large difference when compared to those of the base one, though it exhibited a little lower value at $600^{\circ}C$. The creep rate of the weld metal was lower than that of the base one at the same stress and rupture-time conditions. The creep-rupture ductility of the weld metal is found to be decreased by about 60%, compared to the base one. This is due to the decreasing of tensile elongation and the increasing of the yield stress in the weld metals.

  • PDF

Thermal aging of Gr. 91 steel in supercritical thermal plant and its effect on structural integrity at elevated temperature

  • Min-Gu Won;Si-Hwa Jeong;Nam-Su Huh;Woo-Gon Kim;Hyeong-Yeon Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In this study, the influence of thermal aging on structural integrity is investigated for Gr. 91 steel. A commercial grade Gr. 91 steel is used for the virgin material, and service-exposed Gr. 91 steel is sampled from a steam pipe of a super critical plant. Time versus creep strain curves are obtained through creep tests with various stress levels at 600 ℃ for the virgin and service-exposed Gr. 91 steels, respectively. Based on the creep test results, the improved Omega model is characterized for describing the total creep strain curve for both Gr. 91 steels. The proposed parameters for creep deformation model are used for predicting the steady-state creep strain rate, creep rupture curve, and stress relaxation. Creep-fatigue damage is evaluated for the intermediate heat exchanger (IHX) in a large-scale sodium test facility of STELLA-2 by using creep deformation model with proposed creep parameters and creep rupture curve for both Gr. 91 steels. Based on the comparison results of creep fatigue damage for the virgin and service-exposed Gr. 91 steels, the thermal aging effect has been shown to be significant.

A Study on the High Temperature Deformation Behavior of a Solid Solution Aluminium Alloy (알루미늄 고용체 합금의 고온변형 거동에 관한 연구)

  • Kim, Ho-Gyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.346-351
    • /
    • 1997
  • The creep characteristics of an Al-5wt.% Ag alloy including the stress exponent, the activation energy for creep and the shape of the creep curve were investigated at a normalized shear stress extending from $ 10^{-5}{\;}to{\;}3{\times}10^{-4}$ and in the temperature range of 640-873 K, where silver is in solid solution. The experimental results shows that the stress exponent is 4.6, the activation energy is 141 kJ/mole, and the stacking fault energy is $180{\;}mJ/m^2$, suggesting that the creep behavior of Al-5 wt.% Ag is similiar to that reported for pure aluminum, and that under the current experimental conditions, the alloy behaves as a class II(metal class). The above creep characteristics obtained for Al-5 wt.% Ag are discussed in the light of prediction regarding deformation mechanisms in solid solution alloys.

Creep Damage Evaluation of High Temperature Material Using Small Punch Test Method (소형펀치실험법을 이용한 고온재료의 크리프 손상 평가)

  • Yu, Hyo-Sun;Lee, Song-In;Baek, Seung-Se;Na, Sung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.265-268
    • /
    • 2000
  • In this study, a small punch creep (SP-Creep) test using miniaturized specimen has been described for the development of the new creep test method for high temperature structural components such as headers and tubes of boiler, turbine casing and rotor, and reactor vessel. The SP-Creep testing technique has been applied to 1Cr-0.5Mo steel used widely as boiler header material and the creep test temperature are varied at $550^{\circ}C{\sim}600^{\circ}C$. From the experimental results, e.g. SP-Creep curve behaviors, the creep rate in steady state and creep rupture life with test temperature and load, the load exponential value(n, m), the activation energy($Q_{spc}$), the Monkman-Grant relation and the creep life assessment equation etc., it can be summarized that the SP-Creep test may be a useful test method to evaluate the creep properties of the heat resisting material such as boiler header.

  • PDF

Effect of Final Annealing and Stress on Creep Behavior of HANA Zirconium Fuel Claddings (HANA 지르코늄 핵연료피복관의 크립거동에 미치는 최종 열처리 및 응력의 영향)

  • Kim, H.G.;Kim, J.H.;Jeong, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.4
    • /
    • pp.235-241
    • /
    • 2005
  • Thermal creep properties of the advanced zirconium fuel claddings named by HANA alloys which were developed for high burn-up application were evaluated. The creep test of HANA cladding tubes was carried out by the internal pressurization method in temperature range from 350 to $400^{\circ}C$ and in the hoop stress range from 100 to 150 MPa. Creep tests were lasted up to 800 days, which showed the steady-state secondary creep rate. The creep resistance of HANA fuel claddings was affected by final annealing temperature and various factors, such as alloying element, applied stress and testing temperature. From the results the microstructure observation of the samples before and after creep test by using TEM, the dislocation density was increased in the sample of after creep test. The Sn as an alloying element was more effective in the creep resistance than other elements such as Nb, Fe, Cr and Cu due to solute hardening effect of Sn. In case of HANA fuel claddings, the improved creep resistance was obtained by the control of final heat treatment temperature as well as alloying element.

Thermal Creep Behavior of Advanced Zirconium Claddings Contained Niobium (Nb가 첨가된 신형 지르코늄 피복관의 열적 크리프 거동)

  • Kim Jun Hwan;Bang Je Geon;Jeong Yong Hwan
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.451-456
    • /
    • 2004
  • Thermal creep properties of the zirconium tube which was developed for high burnup application were evaluated. The creep test of cladding tubes after various final heat treatment was carried out by the internal pressurization method in the temperature range from $350^{\circ}C to 400^{\circ}C$ and from 100 to 150 MPa in the hoop stress. Creep tests were lasted up to 900days, which showed the steady-state secondary creep rate. The creep resistance of zirconium claddings was higher than that of Zircaloy-4. Factors that affect creep resistance, such as final annealing temperature, applied stress and alloying element were discussed. Tin as an alloying element was more effective than niobium due to solute hardening effect of tin. In case of advanced claddings, the optimization of final heat treatment temperature as well as alloying element causes a great influence on the improvement of creep resistance.

High Temperature Creep Characteristics Evaluation for Degraded Heat Resistance Steel of Power Plant by Mini-Specimen (미소시험편에 의한 재질열화된 내열강의 고온 크리프 특성 평가)

  • Lyu, Dae-Young;Baek, Seung-Se;Yu, Hyo-Sun
    • Korean Journal of Materials Research
    • /
    • v.13 no.7
    • /
    • pp.429-435
    • /
    • 2003
  • In this study the new creep test using miniaturized specimen(10${\times}$10${\times}$0.5 ㎣) was performed to evaluate the creep characteristics for degraded materials of 2.25Cr-1Mo steel. For this creep test, the artificially aged materials for 330 hrs and 1820hrs at $630^{\circ}C$ were used. The test temperatures applied for the creep deformation of miniaturized specimens was X$630^{\circ}C$ and the applied loads were between 45 kg∼80 kg. After creep test, macro- and microscopic observation were conducted by the scanning electron microscope(SEM). The creep curves depended definitely on applied load and microstructure and showed the three stages of creep behavior like uniaxial tensile creep curves. The load exponents of virgin, 330 hrs and 1820 hrs materials based on creep rate showed 14.8, 9.5 and 8.3 at $550^{\circ}C$ respectively, The 1820 hrs material showed the lowest load exponent and this behavior was also observed in the case of load exponent based on creep rupture time. In contrast to virgin material which exhibited fined dimple fractography, a lot of carbides like net structure and voids were observed on the fractography of degraded materials.

A Study on the Creep Deformation Characteristic of AZ31 Mg Alloy at High Temperature (AZ3l 마그네슘 합금의 고온 크리이프 변형특성에 관한 연구)

  • An Jungo;Kang Daemi;Koo Yang;Sim Sungbo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.186-192
    • /
    • 2005
  • The apparent activation energy Qc, the applied stress exponent n, and rupture life have been determined from creep test results of AZ31 Mg alloy over the temperature range of 200$^{\circ}C$ to 300$^{\circ}C$ and the stress range of 23.42 MPa to 93.59 MPa, respectively, in order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller with data acquisition computer. At the temperature of $200^{\circ}C{\sim}220^{\circ}C$ and under the stress level of 62.43~93.59 MPa, and at around the temperature of $280^{\circ}C{\sim}300^{\circ}C$ and under the stress level of 23.42~39.00 MPa, the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy fur the creep deformation was nearly equal to that of the self diffusion of Mg alloy including aluminum From the above results, at the temperature of $200^{\circ}C{\sim}220^{\circ}C$ the creep deformation for AZ31 Mg alloy seemed to be controlled by dislocation climb but controlled by dislocation glide at $280^{\circ}C{\sim}300^{\circ}C$ .And relationship beween rupture time and stress at around the temperature of $200^{\circ}C{\sim}220^{\circ}C$ and under the stress level of 62.43~93.59 MPa, and again at around the temperature of $280^{\circ}C{\sim}300^{\circ}C$ and under the stress level of 23.42~39.00 MPa, respectively, appeard as fullow; log$\sigma$=-0.18(T+460)(logtr+21)+5.92, log$\sigma$ = -0.25(T+460)(logtr+21)+8.02 Also relationship beween rupture time and steady state creep rate appears as follow; ln$\dot$ =-0.881ntr-2.45

Evaluation of Monkman-Grant Parameters for Type 316LN and Modified 9Cr-Mo Stainless Steels

  • Kim, Woo-Gon;Kim, Sung-Ho;Ryu, Woo-Seog
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1420-1427
    • /
    • 2002
  • The Monkman-Grant (M-G) and its modified parameters were evaluated for type 316LN and modified 9Cr-Mo stainless steels prepared with minor element variations. Several sets of creep data for the two alloy systems were obtained by constant-load creep tests in 550~650$\^{C}$ temperature range. The M-G parameters, m, m', C, and C' were proposed and discussed for the two alloy systems. The m value of the M-C relation was 0.90 in type 316LN steel and 0.84 in modified 9Cr-Mo steel. The m' value of the modified relation was 0.94 in type 316LN steel and 0.89 in 9Cr-Mo steel. Although creep fracture modes and creep properties between type 316LN and modified 9Cr-Mo steels showed a basic difference, the M-G and its modified relations demonstrated linearity quite well. The m' of modified relation almost overlapped regardless of the creep testing conditions and chemical variations in the two alloy systems, and the parameter m' was closer to unity than that of the M-G relation.

Internal Stress, Anelasticity and Recovery in Steady State Creep of 2024 Al Alloy at High Temperature (2024 Al 합금의 고온 정상크리이프 중의 내부응력의 탄성 및 회복에 관한 연구)

  • 박경동;오세욱;강상훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.292-297
    • /
    • 1986
  • Measurements of internal stress .sigma.$_{i}$, anelastic strain .epsilon.$_{A}$ and recovery rate .gamma. were made in steady state creep of 2024 Al alloys over a wide range of stresses at temperatures between 260.deg. C and 380.deg. C, for the purpose of investigating the relations among the three parameters. Values of .sigma.$_{i}$ were obtained by the method of strain transient dip test, and those of .epsilon.$_{A}$ and .gamma. were determined from the results of sudden stress removal or reduction tests. As a main result, it is thought that the anelastic behavior and recovery process are basically dependent on same deformation mechanisms.sms.sms.