• Title/Summary/Keyword: Steady

Search Result 7,982, Processing Time 0.032 seconds

On the Transition between Stable Steady States in a Model of Biochemical System with Positive Feedback

  • Kim, Cheol-Ju;Lee, Dong-Jae;Shin, Kook-Joe
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.6
    • /
    • pp.557-560
    • /
    • 1990
  • The transition from one stable steady state branch to another stable steady state branch in a simple metabolic system with positive feedback is discussed with the aid of the bimodal Gaussian probability distribution method. Fluctuations lead to transitions from one stable steady state branch to the other, so that the bimodal Gaussian evolves to a new distribution. We also obtain the fractional occupancies in the two stable steady states in terms of a parameter characterizing conditions of the system.

Controller design to diminish oscillation and steady state error in water temperature systems with drive delay

  • Nakamura, Masatoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1888-1893
    • /
    • 1991
  • Systematic design of a controller for a water temperature system was considered, with the intention of devising an accurate control experiment. The results of an experiment using a water temperature system based on the pole placement regulator showed water temperature oscillation and steady state error. This paper proposed a. method for eliminating both the oscillation and the steady state error. The oscillation was eliminated by a drive delay compensation technique, in which a future state value of the system was predicted through a real time computer simulation. The steady state error was eliminated by an steady state error correction technique, in which an actual steady state heatrate in the system model was replaced by an imaginary heatrate. By combining these two techniques, we obtained an experimental result for water temperature control of 0.01 (.deg. C) accuracy. Furthermore, the proposed method was evaluated relatively by comparing the experimental results using several other methods and proved to be the most accurate and convenient control method for the delay system.

  • PDF

Steady Flow Characteristics of Four-Valve Cylinder Heads (실린더헤드 형상에 따른 정상유동 특성)

  • 배충식;정경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.197-205
    • /
    • 1996
  • The flow characteristics of five different 4-valve cylinder heads were investigated in a steady flow rig using laser-Doppler velocimetry. The tumble flow of each head with pentroof combustion chamber was quantified by nondimensional tumble number using a tumble adaptor. The formation of tumbling vortex was examined in an optical single-cylinder engine which has windows for in-cylinder LDV measurements. Tumble vortex ratio was estimated from the tumble flow measurement. The four-valve cylinder heads with pent-roof combustion chamber showed the tumble vortex from the intake process, which was investigated in the steady flow test. The tumble adaptor which converts the tumble into swirl flow was found to be feasible in predicting the tumble flow in the real engine. The tumble strength in the steady flow test coincides with that in the real engine experiment within 15%. It was found that the steady flow test on the four-valve cylinder heads provides the tip for a better design of cylinder head.

  • PDF

Verification of the steady-state Nyquist theorem by Monte-Carlo method in n-i-n structures (N-I-N 구조에서 Monte-Carlo 방법에 의한 steady-state Nyquist 정리의 검증)

  • 이기영;모경구;민홍식;박영준
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.8
    • /
    • pp.63-71
    • /
    • 1993
  • To verify validity of the steady-state Nyquist theorem and the steady-state Nyquist theorem with hot carrier effects in semiconductor devices, we calculate thermal noise in n-i-n structures using both the steady-state Nyquist theorem and the Monte-Carlo method, and compare the results from these two-methods. When the carrier temperature is not far from the lattice temperature, the results from both methods agree with each other very well, but in the hot carrier regime there are some discrepancies. Our results support the argument that for MOSFETs and MESFETs operating in the linear region, the channel thermal noise should be explained by the steady-state Nyquist theorem rather than by the existing theories.

  • PDF

A Study on the Comparison Between Experimental and Numerical Analysis for Developing Turbulent Steady Flows in the Entrance Region of a Square Duct (정4각덕트의 입구영역에서 난류정상유동의 실험해와 수치해의 비교에 관한 연구)

  • 고영하;박길문;봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.236-245
    • /
    • 1997
  • The flow characteristics of developing turbulent steady flow are investigated numerically and experimentally in the entrance region of a square duct ($40 mm{\times}40 mm$ and 4, 000 mm). The numerical anaysis are incorporated by finite- volume discretization with staggered grid system and SIMPLE algorithm. The numerical solution are compared with experimental results of mean velocity profiles, turbulence intensity and entrance length. For turbulent steady flow, the turbulent components in the velocity waveforms increase as the dimensionless transverse position approaches the wall. Thrbulence intensity increases as the dimensionless transverse position increases from the center to the wall of the duct for the developing turbulent steady flows. The entrance length of the turbulent steady flow is about 40 times as large as the hydraulic diameter under the present experimental condition.

  • PDF

Steady-State Solution for Solar Wind Electrons by Spontaneous Emissions

  • Kim, Sunjung;Yoon, Peter H.;Choe, G.S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.44.2-44.2
    • /
    • 2016
  • The solar wind electrons are made of three or four distinct components, which are core Maxwellian background, isotropic halo, and super-halo (and sometimes, highly field-aligned strahl component which can be considered as a fourth element). We put forth a steady-state model for the solar wind electrons by considering both the steady-state particle and wave kinetic equations. Since the steady-state solar wind electron VDFs and the steady-state wave fluctuation spectrum are related to each other, we also investigate the complete fluctuation spectra in the whistler and Langmuir frequency ranges by considering halo- and superhalo-like model electron VDFs. It is found that the energetic electrons make important contributions to the total emission spectrum. Based on this, we complete the steady-state model by considering both the whistler and Langmuir fluctuations. In particular, the Langmuir fluctuation plays an important role in the formation and maintenance of nonthermal electrons.

  • PDF

Three-dimensional Analysis of Flow Characteristics for Intake Valve Design (흡기밸브 형상에 따른 3차원 유동특성 해석)

  • 김득상;이상진;조용석;엄인용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.1-6
    • /
    • 2003
  • Steady flow bench test is a practical, powerful and widely used in most engine manufacturers to give a design concept of a new engine. In order to use steady data as a performance index, it is necessary to build some database, which can correlate the port characteristics with engine data. However, it is very difficult to investigate all port shapes with experimental tools. The steady flow scheme is relatively simple and its results are bulk ones such as flow rate and momentum of flow. Therefore a CFD code can be easily applied to the port evaluation. In this study, the steady flow test was simulated through three-dimensional analysis on intake port design for comparing with experimental data and confirming the feasibility of applying analytic method . for this purpose, the effect of valve curvature on flow rate was estimated by a CFD code. Numerical results were compared with those of real steady flow tests. As a result, the results of 3-D analysis were almost consistent with experimental data.

Technology for Real-Time Identification of Steady State of Heat-Pump System to Develop Fault Detection and Diagnosis System (열펌프의 고장감지 및 진단시스템 구축을 위한 실시간 정상상태 진단기법 개발)

  • Kim, Min-Sung;Yoon, Seok-Ho;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.333-339
    • /
    • 2010
  • Identification of a steady state is the first step in developing a fault detection and diagnosis (FDD) system of a heat pump. In a complete FDD system, the steady-state detector will be included as a module in a self-learning algorithm, which enables the working system's reference model to "tune" itself to its particular installation. In this study, a steady-state detector of a residential air conditioner based on moving windows was designed. Seven representative measurements were selected as key features for steady-state detection. The optimized moving-window size and the feature thresholds were decided on the basis of a startup-transient test and no-fault steady-state test. Performance of the steady-state detector was verified during an indoor load-change test. In this study, a general methodology for designing a moving-window steady-state detector for applications involving vapor compression has been established.

Analysis of Steady State Error on Simple FLC (단순 FLC의 정상상태오차 해석)

  • Lee, Kyoung-Woong;Choi, Han-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.897-901
    • /
    • 2011
  • This paper presents a TS (Takagi-Sugeno) type FLC (Fuzzy Logic Controller) with only 3 rules. The choice of parameters of FLC is very difficult job on design FLC controller. Therefore, the choice of appropriate linguistic variable is an important part of the design of fuzzy controller. However, since fuzzy controller is nonlinear, it is difficult to analyze mathematically the affection of the linguistic variable. So this choice is depend on the expert's experience and trial and error method. In the design of the system, we use a variety of response characteristics like stability, rising time, overshoot, settling time, steady-state error. In particular, it is important for a stable system design to predict the steady-state error because the system's steady-state response of the system is related to the overall quality. In this paper, we propose the method to choose the consequence linear equation's parameter of T-S type FLC in the view of steady-state error. The parameters of consequence linear equations of FLC are tuned according to the system error that is the input of FLC. The full equation of T-S type FLC is presented and using this equation, the relation between output and parameters can represented. As well as the FLC parameters of consequence linear equations affect the stability of the system, it also affects the steady-state error. In this study, The system according to the parameter of consequence linear equations of FLC predict the steady-state error and the method to remove the system's steady-state error is proposed using the prediction error value. The simulation is carried out to determine the usefulness of the proposed method.

Steady wind force coefficients of inclined stay cables with water rivulet and their application to aerodynamics

  • Matsumoto, Masaru;Yagi, Tomomi;Sakai, Seiichiro;Ohya, Jun;Okada, Takao
    • Wind and Structures
    • /
    • v.8 no.2
    • /
    • pp.107-120
    • /
    • 2005
  • The quasi-steady approaches to simulate the wind induced vibrations of inclined cables, especially on the rain-wind induced vibration, have been tried by many researchers. However, the steady wind force coefficients used in those methods include only the effects of water rivulet, but not the axial flow effects. The problem is the direct application of the conventional techniques to the inclined cable aerodynamics. Therefore, in this study, the method to implement the axial flow effects in the quasi-steady theory is considered and its applicability to the inclined cable aerodynamics is investigated. Then, it becomes clear that the perforated splitter plate in the wake of non-yawed circular cylinder can include the effects of axial flow in the steady wind force coefficients for inclined cables to a certain extent. Using the lateral force coefficients measured in this study, the quasi-steady theory may explain the wind induced instabilities of the inclined cables only in the relatively high reduced wind velocity region. When the Scruton number is less than around 40, the high speed vortex-induced vibration occurs around the onset wind velocity region of the galloping, and then, the quasi-steady approach cannot be applied for estimating the response of wind-induced vibration of inclined cable.