DOI QR코드

DOI QR Code

Technology for Real-Time Identification of Steady State of Heat-Pump System to Develop Fault Detection and Diagnosis System

열펌프의 고장감지 및 진단시스템 구축을 위한 실시간 정상상태 진단기법 개발

  • Kim, Min-Sung (New and Renewable Energy Department, Korea Institute of Energy Research) ;
  • Yoon, Seok-Ho (Dept. of Energy Plant, Korea Institute of Machinery and Materials) ;
  • Kim, Min-Soo (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • 김민성 (한국에너지기술연구원 신재생에너지연구본부) ;
  • 윤석호 (한국기계연구원 에너지플랜트연구실) ;
  • 김민수 (서울대학교 기계항공공학부)
  • Published : 2010.04.01

Abstract

Identification of a steady state is the first step in developing a fault detection and diagnosis (FDD) system of a heat pump. In a complete FDD system, the steady-state detector will be included as a module in a self-learning algorithm, which enables the working system's reference model to "tune" itself to its particular installation. In this study, a steady-state detector of a residential air conditioner based on moving windows was designed. Seven representative measurements were selected as key features for steady-state detection. The optimized moving-window size and the feature thresholds were decided on the basis of a startup-transient test and no-fault steady-state test. Performance of the steady-state detector was verified during an indoor load-change test. In this study, a general methodology for designing a moving-window steady-state detector for applications involving vapor compression has been established.

고장감지 및 진단(FDD) 시스템의 구축의 기초 연구로 정상상태 진단기에 대한 연구를 수행하였다. 정상상태에 대한 진단은 시스템 전체를 관찰하거나 몇몇 필요한 시스템 파라미터를 모니터링 함으로써 가능하다. 최적화된 정상상태 진단기를 이용하면 FDD 시스템에서 필수적인 정상운전 시의 기준모델(no fault reference model)을 자가학습을 통하여 적용할 수 있다. 본 연구에서는 가정용 열펌프가 냉방조건으로 작동할 경우에 대해 이동창을 기반으로 7개의 측정값들에 대한 표준편차를 분석함으로써 정상상태 판정을 내리도록 하였다. 정상상태 진단기의 작동의 여부는 실내부하를 조절함으로써 확인하였다. 본 연구를 통하여 열펌프 등의 증기압축 사이클 시스템에 대하여 이동창을 기반으로 한 정상상태 진단기 개발 방법을 제시하였다.

Keywords

References

  1. Mahuli, S. K., Rhinehart, R., Riggs, J. B., 1992, “Experimental Demonstration of Non-Linear Model-Based in-Line Control of pH,” J. of Process Control, Vol. 2, No. 3, pp. 145-153. https://doi.org/10.1016/0959-1524(92)85004-G
  2. Cao, S., Rhinehart, R., 1995, “An Efficient Method for on-Line Identification of Steady State,” J. of Process Control, Vol. 5, No. 6, pp. 363-374. https://doi.org/10.1016/0959-1524(95)00009-F
  3. Jiang, T., Chen, B., He, X., and Stuart, P., 2003, “Application of Steady-State Detection Method Based on Wavelet Transform,” Computers and Chemical Engineering, Vol. 27, No. 4, pp. 569-578. https://doi.org/10.1016/S0098-1354(02)00235-1
  4. Glass, A. S., Gruber, P., Roos, M., and Todtli, J.. 1995, “Qualitative Model-Based Fault Detection in Air-Handling Units,” IEEE Control Systems Magazine, Vol. 15, No. 4, pp. 11-22. https://doi.org/10.1109/37.408465
  5. Rossi, T. M., 1995, “Detection, Diagnosis, and Evaluation of Faults in Vapor Compression Cycle Equipment,” Ph.D. Dissertation, Purdue Univ., West Lafayette, IN, USA.
  6. Breuker, M. S., Braun, J. E.. 1998, “Evaluating the Performance of a Fault Detection and Diagnostic System for Vapor Compression Equipment,” Int. J. of HVAC&R Research, Vol. 4, No. 4, pp. 401-425. https://doi.org/10.1080/10789669.1998.10391412
  7. Li, H., 2004, “A Decoupling-Based Unified Fault Detection and Diagnosis Approach for Packaged Air Conditioners,” Ph.D. Dissertation, Purdue Univ., West Lafayette, IN, USA.
  8. Kim, M, Payne, W. V., Domanski, P. A., and Yoon, S. H., 2008, “Design of a Steady-State Detector for Fault Detection and Diagnosis of a Residential Air Conditioner,” Int. J. of Refrigeration, Vol. 31, No. 5, pp. 790-799. https://doi.org/10.1016/j.ijrefrig.2007.11.008
  9. Kim, M., Payne, W. V., Domanski, P. A., and Hermes, C. J. L.. 2006, “Performance of a Residential Heat Pump Operating in the Cooling Mode with Single Faults Imposed,” NISTIR 7350, National Institute of Standards and Technology, Gaithersburg, MD, USA.
  10. REFPROP version 7.0, 2002, “Reference Fluid Thermodynamic and Transport Properties,” NIST Standard Reference Database 23, Gaithersbug, MD 20899, USA.