• Title/Summary/Keyword: Stator flux linkage

Search Result 73, Processing Time 0.028 seconds

Estimation of Effective Coil Length of Superconducting Generator using 3D FEM

  • Shin, Pan-Seok;Park, Doh-Young
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.7-12
    • /
    • 2002
  • This paper presents a method to estimate an effective length of a 1000-kVA superconducting generator using three-dimensional FE analysis. Flux linkage of stator coil and the induced voltage are calculated with FEM program and Faraday's law. An effective length of the stator coil is estimated using the calculated voltage and geometric configurationn of the machine. In order to verify the estimation method, 30-kVA superconducting generator is built and tested. The test result agrees reasonably well with the estimation.

Reduction of Torque Ripple of Permanent Magnet Synchronous Motor (영구자석 동기전동기의 토크 리플 저감 운전)

  • Lee, D.H.;Lee, J.H.;Kim, Y.S.;Kim, J.H.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.918-920
    • /
    • 2001
  • PMSM drives are widely used in industrial and residential applications because of high efficiency, high power density and high performance. For better performance of PMSM, however, torque ripples should be reduced. This paper investigates a reduction of torque ripple due to the unsinusoidal flux linkage produced by the shapes of stator slot and magnetic pole. To minimize torque ripple, a simple flux estimator is proposed. This method iteratively compensates the distributed flux linkage from an error between the measured and estimated currents. The proposed algorithm is verified through simulation.

  • PDF

Stator Flux Vector Control of Synchronous Reluctance Motor (동기형 리럭턴스 전동기의 자속 추정형 센서리스 제어)

  • AHN JOONSEON;KIM SOL;LIM JINJAE;GO SUNGCHUL;LEE JU
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.794-796
    • /
    • 2004
  • In the evaluation of performance for the algorithm of sensorless speed control, the ability of speed control in low speed range and starting is important points. First of all, stability of low speed control is highly required in the application which needs high performance in speed control. For this requirement, this paper represents simple method to estimate the rotor position by comparing reference linkage flux with it's estimation. In the estimation of linkage flux, this paper uses voltage-current model for increasing the performance of speed control in low speed range.

  • PDF

Torque-Angle-Based Direct Torque Control for Interior Permanent-Magnet Synchronous Motor Drivers in Electric Vehicles

  • Qiu, Xin;Huang, Wenxin;Bu, Feifei
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.964-974
    • /
    • 2013
  • A modified direct torque control (DTC) method based on torque angle is proposed for interior permanent-magnet synchronous motor (IPMSM) drivers used in electric vehicles (EVs). Given the close relationship between torque and torque angle, proper voltage vectors are selected by the proposed DTC method to change the torque angle rapidly and regulate the torque quickly. The amplitude and angle of the voltage vectors are determined by the torque loop and stator flux-linkage loop, respectively, with the help of the position of the stator flux linkage. Furthermore, to satisfy the torque performance request of EVs, the nonlinear dead-time of the invertor caused by parasitic capacitances is considered and compensated to improve steady torque performance. The stable operation region of the IPMSM DTC driver for voltage and current limits is investigated for reliability. The experimental results prove that the proposed DTC has good torque performance with a brief control structure.

Study on Comparison Between a Toroidal SRM and a Conventional SRM (Toroidal SRM과 Conventional SRM의 특성 비교에 관한 연구)

  • Kim, Jae-Hyuck;Yang, Hyong-Yeol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.156-165
    • /
    • 2010
  • This paper discusses comparison between a CSRM(conventional SRM) and a TSRM(toroidal SRM). Unlike the CSRM, the TSRM has its windings mounted around the stator york instead of the stator pole. Therefore, the TSRM has many different properties in terms of the structure as well as the waveform of phase currents, phase voltages, back-EMF, flux linkages, etc. This paper presents the theoretical comparison between the TSRM and the CSRM followed by simulation results.

A High-Performance Position Sensorless Motion Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 위치검출기 없는 릴럭턴스 동기전동기의 위치 제어시스템)

  • 김동희;김민회;김남훈;배원식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.427-436
    • /
    • 2002
  • This paper presents an implementation of high-dynamic performance of position sensorless motion control system of Reluctance Synchronous Motor(RSM) drives for an industrial servo system with direct torque control(DTC). The problems of high-dynamic performance and maximum efficiency RSM drives controlled by DTC are saturation of stator linkage flux and nonlinear inductance characteristics with various load currents. The accurate estimation of the stator flux and torque are obtained using stator flux observer of which a saturated inductance $L_d$ and $L_q$ can be compensated by adapting from measurable the modulus of the stator current and rotor position. To obtain fast torque response and maximum torque/current with varying load current, the reference command flux is ensured by imposing $I_{ds} = I_{qs}$. This control strategy is proposed to achieve fast response and optimal efficiency for RSM drive. In order to prove rightness of the suggested control algorithm, the actual experiment carried out at $\pm$20 and $\pm$1500 rpm. The developed digitally high-performance motion control system shown good response characteristic of control results and high performance features using 1.0kW RSM which has 2.57 Ld/Lq salient ratio.

Topology Optimal Interior Permanent Magnet Machine to Improve the Utilization Ratio of Permanent Magnet (영구자석 사용 효율 향상을 위한 IPM 전동기의 최적 토폴로지)

  • Tao, Xu;Zhang, Dianhai;Zhu, Lixun;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.862-863
    • /
    • 2015
  • This paper presents an improved estimation procedure for the contribution to no-load flux linkage created by the permanent magnet (PM) in interior permanent magnet synchronous machines. In the proposed method, the saturation effect in stator and rotor cores are taken into account by utilizing the frozen permeability method (FPM). This improved procedure can evaluate the contribution for each local element in the PM to the no-load flux linkage. According to the analysis results, an effective PM topology optimal design can be carried out to achieve high utilization ratio of PM in the machine. In order to determine the threshold of the low contribution of PM for removing, one multi-objective optimization model is proposed. Based on the optimal threshold, the final optimal topology design of PM can be achieved.

  • PDF

Analysis of Slot Leakage Reactance of Submersible Motor with Closed Slots during Starting Transient Operation

  • Bao, Xiaohua;Di, Chong;Fang, Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.135-142
    • /
    • 2016
  • Generally, closed slots are adopted to reduce the water friction loss in both the stator and the rotor of water filling submersible motor due to the special environment of operation. One of the obvious differences between the traditional induction motors and water filling submersible motors is that the submersible motors only need relatively smaller starting torque. This paper aims to analyze the slot leakage reactance of water filling submersible motor during starting transient operation. An improved analytical method which considered the magnetic saturation of the slot bridge and the skin effect of rotor bars is proposed. The slot permeance factor which has a direct impact on the slot leakage reactance is calculated. Then finite element models with different stator slot types are constructed and search coils are introduced to measure the slot flux linkage. Moreover, the starting performances of the models with two typical stator slots are compared and the flux leakage characteristics are obtained. Finally, the results obtained by finite element method are very close to the results obtained by analytical method.

Neural Network for on-line Parameter Estimation of IPMSM Drive (IPMSM 드라이브의 온라인 파라미터 추정을 위한 신경회로망)

  • 이홍균;이정철;정동화
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.5
    • /
    • pp.332-337
    • /
    • 2004
  • A number of techniques have been developed for estimation of speed or position in motor drives. The accuracy of these techniques is affected by the variation of motor parameters such as the stator resistance, stator inductance or torque constant. This paper is proposed a neural network based estimator for torque and stator resistance in IPMSM Drives. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying. parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator is confirmed by the operating characteristics controlled by neural networks control.

Neural Network Parameter Estimation of IPMSM Drive using AFLC (AFLC를 이용한 IPMSM 드라이브의 NN 파라미터 추정)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.293-300
    • /
    • 2011
  • A number of techniques have been developed for estimation of speed or position in motor drives. The accuracy of these techniques is affected by the variation of motor parameters such as the stator resistance, stator inductance or torque constant. This paper is proposed a neural network based estimator for torque and stator resistance and adaptive fuzzy learning contrroller(AFLC) for speed control in IPMSM Drives. AFLC is chaged fuzzy rule base by rule base modifier for robust control of IPMSM. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator and AFLC is confirmed by comparing to conventional algorithm.