• Title/Summary/Keyword: Stator flux

Search Result 604, Processing Time 0.105 seconds

Improved Mutual MRAS Speed Identification Based on Back-EMF

  • Zheng, Hong;Zhao, Jiancheng;Liu, Liangzhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.769-774
    • /
    • 2016
  • In the design of sensorless control system for induction motor, high-precision speed estimation is one of the most difficult problems. To solve this problem, the common method is model reference adaptive method (MRAS). MRAS requires accurate motor parameters to estimate rotor speed precisely. However, when motor is running, the variety of temperature and magnetic saturation will lead to the change of motor parameters such as stator resistance and rotor resistance, which will lower the accuracy of the speed estimation. To improve the accuracy and rapidity of speed estimation, this paper analyses the mutual MRAS speed identification based on rotor flux linkage, and proposes an improved mutual MRAS speed identification based on back-EMF. The improved method is verified by Simulink simulation and motor experimental platform based on DSP2812. The results of simulation and experiment indicate that the method proposed by this paper can significantly improve the accuracy of speed identification, and speed up the response of identification.

Parameter estimation of permanent magnet synchronous motor and adaptive control by MRAS (MRAS를 이용한 매입형 영구자석 동기전동기의 상수 추정 및 적응제어기법)

  • Yang, Hyunsuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.697-702
    • /
    • 2016
  • To control permanent magnet synchronous motors smoothly, it is important to know the exact parameter values of the stator resistance, various inductances, and the flux linkage of the permanent magnet. In practice, these parameters vary due to a variable operating point, temperature change, or a fault. This paper proposes a MRAS (Model Reference Adaptive System) based parameter estimator and adaptive control scheme. Owing to the non-linearity of the system equation with respect to these parameters, although many schemes proposed previously assumed that some parameters are known, all the parameters were assumed to be unknown. The simulation results revealed the effectiveness of the proposed algorithm.

Model Predictive Power Control of a PWM Rectifier for Electromagnetic Transmitters

  • Zhang, Jialin;Zhang, Yiming;Guo, Bing;Gao, Junxia
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.789-801
    • /
    • 2018
  • Model predictive direct power control (MPDPC) is a widely recognized high-performance control strategy for a three-phase grid-connected pulse width modulation (PWM) rectifier. Unlike those of conventional grid-connected PWM rectifiers, the active and reactive powers of permanent magnet synchronous generator (PMSG)-connected PWM rectifiers, which are used in electromagnetic transmitters, cannot be calculated as the product of voltage and current because the back electromotive force (EMF) of the generator cannot be measured directly. In this study, the predictive power model of the rectifier is obtained by analyzing the relationship among flux, back EMF, active/reactive power, converter voltage, and stator current of the generator. The concept of duty cycle control in the proposed MPDPC is introduced by allocating a fraction of the control period for a nonzero vector and rest time for a zero vector. When nonzero vectors and their duration in the predefined cost function are simultaneously evaluated, the global power ripple minimization is obtained. Simulation and experimental results prove that the proposed MPDPC strategy with duty cycle control for the PMSG-connected PWM rectifier can achieve better control performance than the conventional MPDPC-SVM with grid-connected PWM rectifier.

Sensorless Vector Control for Non-salient Permanent Magnet Synchronous Motors using Programmable Low Pass Filter (프로그래머블 저역통과 필터를 이용한 비돌극형 영구자석 동기전동기 센서리스 벡터제어)

  • Yu, Jae-Sung;Lee, Dong-Yup;Won, Chung-Yuen;Lee, Byoung-Kuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.74-81
    • /
    • 2006
  • This paper proposes the sensorless vector control scheme of a Non-salient permanent-magnet synchronous motor (SPMSM) using programmable low pass filter (PLPF) to estimate a stator flux with the information of a rotor position and speed. The sesorless vector control of PMSM using PLPF can solves the dc drift problem associated with a pure integrator and a LPF. Also, the PLPF has the phase and gain compensator to estimate exactly rotor position and speed. Therefore, the information of a position and speed is exactly estimated because the drift and offset problems are solved by the PLPF. The experimental results show good performance over the 10[%] of the rated speed and under load condition.

Analysis of an Interior Permanent-Magnet Machines with an Axial Overhang Structure based on Lumped Magnetic Circuit Model

  • Seo, Jangho;Seo, Jung-Moo
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.94-101
    • /
    • 2016
  • This paper shows a new magnetic field analysis of an interior permanent magnet (IPM) machines with an axial overhang structure wherein the rotor axial length exceeds that of the stator. The rotor overhang used to increase torque density of the radial flux machine is difficult to analyze because of extra consideration of axial direction, and thus it is general for machine designer to take 3-D finite element analysis (FEA) capable of considering both radial and axial complicated geometry in the machine. However, it requires too much computing time for preliminary design especially for optimization process. Therefore, in this paper a 2-D analytic method using a lumped magnetic circuit model (LMCM) is proposed to overcome the problem. For the analysis of overhang effect, the magnetic circuit is separated and solved from overhang and non-overhang regions respectively. For the validation of proposed concept, 3-D finite element analysis (FEA) is performed. From the analysis results, it is shown that our new proposed method presents good performance in terms of calculating electromotive force (EMF) and torque within a short time. Therefore, the proposed model can be useful in design of IPM with an overhang structure.

Position and Speed Sensorless Vector Control of SynRM for Efficiency Optimization Control (효율 최적화 제어를 위한 SynRM의 위치 및 속도 센서리스 벡터제어)

  • Lee , Jung-Chul;Chung, Dong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.59-70
    • /
    • 2002
  • This paper proposes a position and speed sensorless vector control for Synchronous Reluctance Motor(SynRM) operating at optimum efficiency and high response, in which core loss is taken into account, and discusses the performance of system. The proposed control scheme is based on the flux estimation combined stator voltage and current. In this paper, current angle condition of efficiency optimization which minimizes the copper and iron losses is derived based on the equivalent circuit model of the SynRM. The research result of closed loop position and speed control with efficiency optimization control is given to verify the proposed scheme.

A Strategy on Adaptive Current PWM Inverter for Induction Motor (유도 전도기용 순시전류 추종형 PWM 인버터에 관한 연구)

  • 박철우;박성준;권순재;김광태
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.2
    • /
    • pp.56-61
    • /
    • 1992
  • This paper is reported on the simulation and test results of a constant flux vector control scheme of an induction motor without any speed detecting eqiupment, in which the adaptive current PWM inverter is used. The rotor speed is estimated form stator voltage, current and parameters of motor, and control algorithm in the system is performed with by micro processor. By comparing the waveform of input current of this system with that of the case with taco-generator, good agreement is observed except small ripple component. Experimental results which are acquired at start up and during acceleration/deceleration are quite similar to those of the simulation results.

  • PDF

Analysis of Cascaded H-Bridge Multilevel Inverter in DTC-SVM Induction Motor Drive for FCEV

  • Gholinezhad, Javad;Noroozian, Reza
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.304-315
    • /
    • 2013
  • In this paper, analysis of cascaded H-bridge multilevel inverter in DTC-SVM (Direct Torque Control-Space Vector Modulation) based induction motor drive for FCEV (Fuel Cell Electric Vehicle) is presented. Cascaded H-bridge multilevel inverter uses multiple series units of H-bridge power cells to achieve medium-voltage operation and low harmonic distortion. In FCEV, a fuel cell stack is used as the major source of electric power moreover the battery and/or ultra-capacitor is used to assist the fuel cell. These sources are suitable for utilizing in cascaded H-bridge multilevel inverter. The drive control strategy is based on DTC-SVM technique. In this scheme, first, stator voltage vector is calculated and then realized by SVM method. Contribution of multilevel inverter to the DTC-SVM scheme is led to achieve high performance motor drive. Simulations are carried out in Matlab-Simulink. Five-level and nine-level inverters are applied in 3hp FCEV induction motor drive for analysis the multilevel inverter. Each H-bridge is implemented using one fuel cell and battery. Good dynamic control and low ripple in the torque and the flux as well as distortion decrease in voltage and current profiles, demonstrate the great performance of multilevel inverter in DTC-SVM induction motor drive for vehicle application.

An Improvement on low Speed Operation Performances of DTC for 3-level Inverter-fed Induction Motors (3레벨 인버터로 구동되는 유도전동기 직접토크제어의 저속성능 개선)

  • Lee, Kyo-Beum;Song, Joong-Ho;Choy, Ick;Kim, Kwang-Bae;Yoo, Ji-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.10
    • /
    • pp.693-700
    • /
    • 2000
  • A direct torque control algorithm for 3-level inverter-fed induction motors is presented. Conventional voltage selection methods provoke some problems such as stator flux drooping phenomenon and undersirable torque control appeared especially at the low speed operation. To overcome these problems, a proposed method uses intermediate voltage vectors, which are inherently generated in 3-level inverters. In the proposed algorithm, both subdivision of the basic switching sectors and applications of tntermediated voltages improve the low speed operation characteristics. This algorithm basically considers applications in which direct torque controlled induction motors are fed by 3-level inverters with low switching frequency around 500Hz. An adaptive observer is also employed to bring better responses at the low speed operation, by estimating some state-variables, motor speed and motor parameters which take a deep effect on the performance of the low speed operation. Simulation and experiment results verify effectiveness of the proposed algorithm.

  • PDF

Permanent Magnet Overhang Effect on the Characteristics in Brushless DC Motor (브러시리스 직류전동기 특성에 대한 영구자석 오버행 효과)

  • 전연도;약미진치;이주
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.229-236
    • /
    • 2004
  • In this paper, the effect of permanent magnet overhang structure on the characteristics in Brushless DC motor has analyzed quantitatively. We classified the overhang structure as symmetric and asymmetric. 3D equivalent magnetic circuit network (EMCN) method which uses the permeance as the distributive variable is used for the efficient analysis of magnetic field. The overhang effect which increases the linkage flux at the stator is verified by comparison between overhang and no overhang structure. In addition, it is known that no load back electro motive force (EMF) is also increased due to the overhang effect. In case of asymmetric overhang structure, the ratio effect of the upper to lower overhang length on the magnetic forces is analyzed. Form the analysis results, the variation of the asymmetric overhang ratio has a significant effect on the axial magnetic force except the radial and tangential magnetic forces. The validity of the analysis results is also clarified by comparison between calculated results and measured ones such as back EMF and cogging torque.