• Title/Summary/Keyword: Stator current

Search Result 683, Processing Time 0.033 seconds

Power and loss characteristics of PMSM/G with double-sided Halbach magnetized rotor (양측식 Halbach 자화 회전자를 갖는 영구자석 동기 전동발전기의 출력 및 손실 특성)

  • Jang, Seok-Myeong;You, Dae-Joon;Choi, Sang-Kyou
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.723-724
    • /
    • 2008
  • The rotational loss is one of the most important problems for the practical applications of PM synchronous motor/generator. This rotational loss is divided as the mechanical loss by windage and bearing and iron loss by hysteresis loop and eddy current in the part of the magnetic field. So, In this paper, a double-sided PMSM/G without the iron loss is designed by analytical method of the magnetic field and estimation of the back-EMF constant represented as the design parameter. This design model consists of the double-sided PM rotor with Halbach magnetized array and coreless 3-phase winding stator. The results show that the double-sided PMSM/G without iron loss can be applicable to the required system without the rotational loss.

  • PDF

Study on an Adaptive Maximum Torque Per Amp Control Strategy for Induction Motor Drives

  • Kwon, Chun-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.110-117
    • /
    • 2013
  • Maximum Torque Per Amp (MTPA) control for induction motor drives seeks to achieve a desired torque with the minimum possible stator current. This is favorable in terms of inverter operation and nearly optimal in terms of motor efficiency. However, rotor resistance variation can cause significant performance degradation. This work demonstrates that existing MTPA controls perform sub-optimally as temperature varies. An adaptive MTPA control strategy is proposed that always achieves optimal performance without exhibiting hunting phenomenon regardless of rotor temperature. The proposed control is experimentally shown to accurately achieve the desired torque.

Electromagnetic Characteristics Analysis of High-speed Brushless DC Motor (고속 BLDC 전동기의 전자기 특성 해석)

  • Park, Hyung-Il;Jang, Seok-Myeong;Choi, Jang-Young
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.916-917
    • /
    • 2015
  • This paper deals with electromagneitc characteristics analysis of high-speed brushless DC motor. First, under same rated and restricted conditions, four models which have different slot combinations each other are designed using 2-d finite element (FE) analyses. Designed models are analyzed and compared in terms of core loss, copper loss, eddy-current loss, etc. On the basis of analysis results, it is found that the motor with a 2-pole PM rotor and a 6-slot stator has most outstanding performances in electromagnetic aspects.

  • PDF

Design of an Observer for Position and Speed Sensorless Vector Control of PMSM (PMSM의 위치 및 속도 센서리스 벡터제어를 위한 관측기의 설계)

  • 정동화
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.54-63
    • /
    • 1998
  • This paper proposes a theoretical analysis of a closed loop adaptive speed control system for control the inverter driven permanent magnet synchronous motor(PMSM). This control system utilizes a mechanically sensorless state observer for the generation of all controller feedback information. The observer processes measurements of stator frame voltage and current to produce estimates of rotor position and speed and rotor frame currents. It is shown that the identity observer, when properly formulated, has the same linearized error dynamics as the extended kalman filter(EKF). Consequently, it is shown that the gains within the identity observer can be designed in a manner identical to that of the EKF. In this way, the designability of the nonlinear observer is assured, as is the optimality of its performance for small errors. A sequence of simulation are performed and they demonstrate the successful performance.

  • PDF

Topology Optimization of a Structure under Harmonic Excitation caused by Magnetic Fields (자기장에 의한 조화가진을 받는 구조물의 위상 최적화)

  • Yu, Jeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1613-1620
    • /
    • 2001
  • This study is focused on the application of the homogenization design method (HDM) to reduce the vibration level of a structure excited by magnetic harmonic farces. This is accomplished by obtaining the optimal material distribution in a design domain to minimize the frequency response caused by the magnetic harmonic excitation. The Maxwell stress method is used to compute the magnetic force and the HDM is applied leer the optimization. The developed method is applied to a simple pole model that is excited by the harmonic bending farce caused by the current around an adjacent stator. Results shows that the HDM is valid to minimize the frequency response.

Simultaneous Estimation of the Speed and the Secondary Resistance under the Transient State of Induction Motor

  • Akatsu, Kan;Kawamura, Atsuo
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.298-303
    • /
    • 1998
  • In the speed sensorless control of the induction motor, the machine parameters (especially the secondary resistance R2) have a strong influence to the speed estimation. It is known that the simultaneous estimation of the speed and R2 is impossible in the slip frequency type vector control, because the secondary flux is constant. But the secondary flux is not always constant in the speed transient state. In this paper the R2 estimation in the transient state without adding any additional signal to the stator current is proposed. This algorithm uses the least mean square algorithm and the adaptive algorithm, and it is possible to estimate the R2 exactly. This algorithm is verified by the digital simulations and the experiments.

  • PDF

Sensorless control of a permanent magnet synchronous motor (영구 자석형 동기전동기의 센서리스 제어)

  • Yang Soon-Bae;Hong Chan-Hee;Cho Kwan-Yuhl
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.289-292
    • /
    • 2002
  • A sensorless control of a PM synchronous motor under the parameter variation is presented. The rotor position is estimated by using the d-axis and q-axis current errors between the real system and motor model of the estimator. The stator resistance is measured at low speeds when the motor changes its rotating direction. The gains in the position estimator are also adapted according to the motor speeds.

  • PDF

Development of BLDC Motor Controller for Tread Mill Application (Tread Mill 구동용 BLDC 제어기 개발)

  • Ahn Jin-Woo;Lee Dong-Hee;Park Sung-jun
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.138-141
    • /
    • 2002
  • BLDCM(Brushless D.C. Motor) is widely used for industrial application because of high efficiency and high power density Especially, in servo system and home appliance, BLBCM is very useful due to high control performance and low acoustic noise. In this paper, 2.5HP rated BLDCM controller and drive was developed for tread mill application. The prototype BLDCM has 4 poles rotor and 24 slots stator. Ferrite was used as a rotor magnet due to the cost and temperature characteristic. For the stable operation of tread mill, over current and high temperature can be detected by the DSP controller. For the commutation signal, switching patterns from the sensorless circuit and hall sensor signal are used in the DSP controller.

  • PDF

Identification of Parameters for Induction Motor at Standstill (완전 정지형 방식에 의한 유도 전동기 파라미터 오토튜닝)

  • Kim J.H.;Hong C.O.;Kwon B.H.;Lim K.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.900-903
    • /
    • 2003
  • An identification method of induction motor parameters such as rotor time constant and mutual inductance at standstill condition is discussed assuming that stator resistance and leakage has already been obtained applying two different DC voltage and single phase voltage to the induction motor, respectively. This proposed scheme is implemented by means of Model Reference Adaptive Control (MRAC) technique, which uses a rotor flux equation in voltage model as a reference model and one in current model and is demonstrated through experiment.

  • PDF

Characteristic Analysis of In-Wheel Motor with Parallel Winding (병렬결선방식을 이용한 인휠 전동기 특성해석)

  • Kim, Tae-Hyoung;Lee, Dong-Hee;Ahn, Jin-Woo;Ha, Byung-Gil;Gang, Byung-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.96-98
    • /
    • 2008
  • This paper present in-wheel BLDC motor using parallel winding. The voltage of proposed motor is higher than Y-connection three phase BLDC motor in order to separated connection. When the stator resistance and inductance are stable, maximum phase current and maximum torque is increased by high injected voltage. The proposed motor is verified from experimental result of the 2[kW] in-wheel motor on electric vehicle drive.

  • PDF