Journal of the Korean Data and Information Science Society
/
제14권4호
/
pp.877-887
/
2003
A two-stage procedure is proposed to estimate the population proportion of a sensitive group. The proposed procedure is obtained by combining the direct question method and a modified randomized response technique. It is verified that the proposed procedure is more efficient than existing methods under some mild conditions.
This study exploits the data discriminating capability of silhouette statistics, which combines wavelet-based vertical energy threshold technique for the purpose of extracting damage-sensitive features and clustering signals of the same class. This threshold technique allows to first obtain a suitable subset of the extracted or modified features of our data, i.e., good predictor sets should contain features that are strongly correlated to the characteristics of the data without considering the classification method used, although each of these features should be as uncorrelated with each other as possible. The silhouette statistics have been used to assess the quality of clustering by measuring how well an object is assigned to its corresponding cluster. We use this concept for the discriminant power function used in this paper. The simulation results of damage detection in a truss structure show that the approach proposed in this study can be successfully applied for locating both open- and breathing-type damage even in the presence of a considerable amount of process and measurement noise.
본 논문에서는 일반화추정방정식(GEE)모형에 대한 부스트랩 방법의 적용에 대하여 살펴본다. 다양한 부스트랩 방법들 중 GEE모형에 적용이 가능한 잔차, 쌍 및 점수함수 부스트랩 방법을 가상 및 실제 자료들에 적용한 결과 회귀계수들에 대한 추정치와 표준오차가 점근값들과 차이를 보이는 것으로 나타났다. 따라서 표본수가 크지 않은 경우 부스트랩 방법을 통하여 GEE모형에서의 회귀계수에 대한 추정치화 표준편차를 구하는 것이 효과적임을 알 수 있다.
과거에는 IP기반으로 허가되지 않은 네트워크 접근을 차단하는 침입차단시스템, 그리고 악성 코드 패턴을 통해 알려진 공격을 탐지하는 침입탐지시스템이 정보보호시스템의 주류를 이루었다. 그러나 최근들어 웜과 같은 악성코드의 확산속도와 피해가 급속히 증가하면서, 알려지지 않은 이상 트래픽에 대한 탐지관련 연구가 활발히 이루어지고 있다. 특히 개별시스템이 아닌 네트워크 관점에서의 트래픽 통계정보를 이용하는 탐지 방법들이 주류를 이루고 있는데, 실제 검증을 위한 네트워크 트래픽 Raw 데이터나 실험에 적합한 통계정보를 확보하는데는 많은 어려움이 존재한다. 이에 본 논문에서는 연구에서 도출된 공격탐지 기법을 검증하기 위한 네트워크 트래픽 Raw 데이터와 시계열 같은 통계정보 추출 기법을 제시한다. 또한 혼합된 트래픽의 유효성을 확인하여, 탐지실험에 적합함을 보인다.
In this paper, For 4th generation wireless communication systems, we propose a method to predict FH patterns in FH-OFDMA systems. OFDM is recognized as a promising modulation technique. Multi-user allocation in OFDM system can use FH that provides the spectrum-spread techniques. If one can generate more predictable FH sequences, then performance of the system can be easily improved. Current random FH and simple adaptive FH methods, however, are not considering predicting FH sequences. In this paper we show that the sampling of the wireless faded signal is not realized as a certain probability nature. With this regard, the proposed predictive FH allocation method is designed to embed the unknown probability models. Simulation study shows that the predictive FH method is more accurately predict FH sequences than the random or simple adaptive FH methods. We will further improve this proposed method to apply QoS control and MAC function development in OFDMA based wireless physical structures, especially maritime wireless data communications.
불균형 자료 문제에 대한 해결책으로 SMOTE (synthetic minority over-sampling technique)가 가장 많이 사용되고 있다. SMOTE는 유클리드 거리를 기반으로 가장 가까운 이웃을 선택한다. 그러나 유클리드 거리의 단점 중 하나는 변수들 간의 상관관계를 고려하지 않는다는 것이다. 이에 대한 대안으로 변수 간의 공분산을 고려하는 마할라노비스 거리가 제안되었다. 그러나 이상치가 존재하는 경우, 대개 마할라노비스 거리를 계산하는 데 영향을 미친다. 이 문제를 해결하기 위해 최소 공분산 행렬 MCD (minimum covariance determinant)를 사용하여 공분산 행렬을 추정하여 마할라노비스 거리를 사용한다. 이후 MCD를 활용한 마할라노비스 거리를 SMOTE에 적용하여 새로운 관측치를 생성한다. 대부분의 경우 이 방법이 불균형 자료를 분류하는 데 높은 성능 지표를 제공함을 보여주었다.
Journal of the Korean Data and Information Science Society
/
제13권2호
/
pp.261-270
/
2002
Recently, the demand of the Intelligent Transportation System(ITS) has been increased to a large extent, and a real-time traffic information service based on the internet system became very important. When ITS companies carry out real-time traffic services, they find some traffic data missing, and use the conventional method of reconstructing missing values by calculating average time trend. However, the method is found unsatisfactory, so that we develop a new method based the spatial and spatial-temporal models. A cross-validation technique shows that the spatial-temporal model outperforms the others.
Communications for Statistical Applications and Methods
/
제27권1호
/
pp.109-128
/
2020
A climate-impact projection usually consists of several stages, and the uncertainty of the projection is known to be quite large. It is necessary to assess how much each stage contributed to the uncertainty. We call an uncertainty quantification method in which relative contribution of each stage can be evaluated as uncertainty decomposition. We propose a new Bayesian model for uncertainty decomposition in climate change impact assessments. The proposed Bayesian model can incorporate uncertainty of natural variability and utilize data in control period. We provide a simple and efficient Gibbs sampling algorithm using the auxiliary variable technique. We compare the proposed method with other existing uncertainty decomposition methods by analyzing streamflow data for Yongdam Dam basin located at Geum River in South Korea.
In this paper we propose a logistic regression method to estimate the survival function and the median survival time in interval-censored data. The proposed method is motivated by the data augmentation technique with no sacrifice in augmenting data. In addition, we develop a cross validation criterion to determine the size of data augmentation. We compare the proposed estimator with other existing methods such as the parametric method, the single point imputation method, and the nonparametric maximum likelihood estimator through extensive numerical studies to show that the proposed estimator performs better than others in the sense of the mean squared error. An illustrative example based on a real data set is given.
Mirzaei, Shahryar;Borzadaran, Gholam Reza Mohtashami;Amini, Mohammad;Jabbari, Hadi
Communications for Statistical Applications and Methods
/
제24권4호
/
pp.339-351
/
2017
Resampling approaches were the first techniques employed to compute a variance for the Gini coefficient; however, many authors have shown that an analysis of the Gini coefficient and its corresponding variance can be obtained from a regression model. Despite the simplicity of the regression approach method to compute a standard error for the Gini coefficient, the use of the proposed regression model has been challenging in economics. Therefore in this paper, we focus on a comparative study among the regression approach and resampling techniques. The regression method is shown to overestimate the standard error of the Gini index. The simulations show that the Gini estimator based on the modified regression model is also consistent and asymptotically normal with less divergence from normal distribution than other resampling techniques.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.