A Study on Classification and Localization of Structural Damage
through Wavelet Analysis
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ABSTRACT

This study exploits the data discriminating capability of silhouette statistics, which combines wavelet-based vertical energy
threshold technique for the purpose of extracting damage-sensitive features and clustering signals of the same class. This
threshold technique allows to first obtain a suitable subset of the extracted or modified features of our data, i.e., good predictor
sets should contain features that are strongly correlated to the characteristics of the data without considering the classification
method used, although each of these features should be as uncorrelated with each other as possible. The silhouette statistics
have been used to assess the quality of clustering by measuring how well an object is assigned to its corresponding cluster. \We
use this concept for the discriminant power function used in this paper. The simulation results of damage detection in a truss
structure show that the approach proposed in this study can be successfully applied for locating both open- and breathing-type
damage even in the presence of a considerable amount of process and measurement noise.

1. Introduction

This paper investigates a structural damage localization
problem using a wavelet-based signal classification method
that extracts signal features with the best discrimination
ability when classifying the location of stiffness damage in a
planar truss structure. The proposed approach uses
simulation data generated from a truss model subjected to
an unknown random excitation. Since most signal features
in the damage-induced response are irrelevant to the class
distinction and inevitably corrupted with measurement
noises, we first attempt to apply the VET criteria previously
proposed by Jung et al. [1]. According to these criteria,
good predictor sets should contain features that are strongly
correlated to the class distinction, although each of these
features should be as uncorrelated with each other as
possible; we thus select differentiated features for data
dimensionality reduction and noise removal. Secondly, the
proposed VETS (VET wavelet positions containing large
silhouette statistics) comprises a few features with highest
silhouette statistics to find the smaller number of features
having more discriminating power for localizing a stiffness-
damaged element in a truss structure.

2. Review of Related Theories

2.1 Wavelet Transformation

Discrete wavelet transform (DWT) effectively projects a
temporal signal into a special wavelet basis that entails
adjustable multiresolution parameters such as scale and
position to represent a nonstationary signal. Typically, DWT
is performed on multiple levels with different frequency
resolutions. As each level of the transformation is
performed, there is a trade-off between the time and
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frequency resolution. The full DWT for a time domain
signal in L, (finite energy), f(t), can be represented in

terms of a shifted version of a scaling function ¢(t) and a

shifted and dilated version of a so-called mother wavelet
function w(t) . DWT can be represented as

f(t) = ZCL,k¢L,k (t)+zzdj,ky/j,k ) 1)

kez j=LkeZ

where d;,  are the wavelet coefficients and c , ,

L <J are the scaling coefficients. These coefficients are
given by the inner productin L,,i.e.,

Cu =< f) g, (> and d;, =<fO).y;, > (2

Here, ¢, ,(t)=2""¢(2"t-k);keZ is a family of
scalar functions and y/; , (t) = 2"y (2’t-k); j> L keZ
is a family of wavelet functions. If the mother functions are
properly selected, their family forms an orthogonal basis for
the signal space.

Consider a sequence of data y = (y(t,),---, y(t,)) taken
from f(t) or obtained as a realization of y(t) = f(t)+¢,

at equally spaced discrete time points t=t;s, where &, s
are independent and identically distributed (i.i.d.) noises
following N(0,6°) . The discrete wavelet transform
(DWT) of y is defined as d =Wy, where W is the
orthonormal NxN DWT matrix. It is given that
d=(c.d..d.,,-.d;), where ¢ = (CL,O’“.’CLYZL_]_) )

d, = (o0 q) o and dy=(dygend )



Using inverse DWT, the N x1 vector y of the original
signal curve can be reconstructed as y=WT'd . By
applying DWT to the data ys, d=Wy, we obtain the
following model in the wavelet domain: d;, =&,, +7;,
j=L-3 k=01,--,2"-1 ,
k=01,--,2" -1 ,

J =log,N —1. The model can be represented in the vector

for and

Cy = HL,k /i for where

format as follows.

d=0+7n 3)

where d,0 , and 7 represent the collection of all
coefficients, parameters, and errors, respectively. Since W
is an orthonormal transform, 7, ’s are still i.i.d. N(O, o?)
[6]. In order to simplify the notation used in this paper,
d=(d,,d,,...,dy) is used instead of c, and d; for
the components of d.

2.2 Wavelet Model for Multiple Signals
We denote a vector of N equally-spaced data points

from a signal curve, where N =2’ with some positive
integer J and i=1,2,---,M by Yy, =[Vy, Yooy Yl
Let Y =[y,Y,,-5, Yyl be the collection of M

multiple sets of functional data. When DWT W s applied
to a data set, the matrix of wavelet coefficients obtained
from this transformation is D =WY, where

D :[dvdz""'dm ]T ) di :[dilldiz""vdiN] , and dim is
the wavelet coefficient at the m™ wavelet position for the

i ™ data curve. The model of wavelet coefficients D from
M signals is given as follows:

D=0+Z 4
where ® =[0,,---,6,,1 (6, =[6,,6,,, -,
is a column of MxN
distribution N (0,0%) . The measurement error (noise)
variation of the wavelet coefficients is characterized by the
common process variance o for multiple signals.

Oy.]1) and Z
random errors with normal

3. Data Classification Methodology
3.1 Data Pre-selection by Vertical Energy
Threshold (VET)

Most wavelet-related models for analyzing complicated
signals have focused on feature selection and noise removal
for the case of a single signal. However, many engineering
applications require the simultaneous processing of multiple
signals to understand the nature of a system or to extract
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hidden features of the defects within the system. Although a
method for single-signal-based wavelet feature selection can
be applied to process multiple signals, it can cause a
problem in that different numbers and choices of
representative wavelet features in different signals
constitute no “unified wavelet-positions” in the comparison
of signals, especially in the case of signals from different
classes in a distinct process effect. Therefore, Jung et al.
used the advantages afforded by scalograms [2] and
developed the following VET procedure [1]. This wavelet
feature selection procedure balances the reconstruction error
against the data-reduction efficiency and proves that is
powerful at capturing key patterns in multiple signals while
removing the embedded noise. The selected wavelet
coefficients are treated as the “reduced-size” data (reduced
number of features) in subsequent analysis for decision
making such as clustering and classification. The study
introduced the overall relative reconstruction error
( ORRE ) function for processing multiple signals as
follows:

ORRE(12) = A(A) +&-Y(A) )
where
ZE[” dvm (1_ I (H dvm H2> ﬁ“)) HZ]
A=
2 Elld,, ]
©)
2 El(ld,, [*> )]
Y(2) =" )

N

Here, E represents the expectation of random variables.
Note that equations (6) and (7) include the indicator

function, 1(|d,, |[°> 1), which constitutes the threshold
parameter. The indicator function is based on the “vertical

energy” metric,

Iy I 2 m=1,2,...

=d, 2+d, > +...+d,, % N, (8
which is the sum of all wavelet coefficients at the M ™
wavelet position. This is why it is called vertical-energy-
based threshold (VET). Further, the ORRE criterion was
originally developed due to the requirement for balancing
the reconstruction error and the data-reduction ratio.

Equation (6) represents a “normalized” reconstruction error

from the wavelet approximation model Y =W ™D . On the
other hand, equation (7) indicates the number of normalized
wavelet coefficients. This term is used as a penalty for
including an excessive number of wavelet coefficients so
that the data model can be approximated and represented in
the simplest manner possible. Normally, the weighting
parameter of the penalty, &, in equation (5) should be



defined by the user. Alternatively, it can be provided by the
generalized cross validation (GCV) method [3]. For
simplicity, this study assumes & =1, which places equal

weights on both components, Aand Y.

Given VET in equation (8), ORRE is minimized to
determine A . Therefore, a simple formula for estimating
the optimal A4 with A, is developed as

M = ZE(” dvm ||2)/N (9)

Since every wavelet coefficient is independent and has a
normal distribution, the vertical energy of each wavelet
position follows a non-central chi-square distribution [4].
Based on this result and some other calculus derivations,

Jung et al. [1] proved the optimality of A,,, . Therefore, the
™ position of the wavelet coefficients (across signals) can
be selected if its vertical energy is larger than A, , .

3.2  Discriminant Analysis through Silhouette
Statistics

This section describes a new approach for feature
selection that generates VETS. Silhouette statistics have
been widely used to assess the quality of clustering by
measuring how well an object is assigned to its
corresponding cluster. See reference [2] for more details on
silhouette statistics. Here, this concept is expanded to the
discriminant power function, as shown in equation (10)
below. For signal pattern classification, it is assumed that a

data H=(d,,G(j))
j=1,---,M . The data set has M data points with well-
defined class labels. Note that d—j:(dlj,dzj,---,dpj)

the signal vector for the j™ sample described by p

set is given in which for

predictor variables that are pre-selected by VET (where
p=>"1(ld,, |F>Ay). ie. the number of wavelet

positions selected by the VET procedure) and
G(j)eG={G,,G,,---,G,} is the class label associated
with dT . Note also that k is the number of classes and

n, is the number of dT in G, . The proposed

discriminant power function based on silhouette statistics at
the i ™ VET feature is then defined as

1,2,

(10)

1¥ b(d)-a(,)
i Vz P

= max{a, (d,),b,(d,)}

where, for dT eG,,
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a(d))= ((d;.d;) (11)
d 7;.€G,
b(d)—mln— > d(d,.d;). (12)
szk nk d EG
and
di (dAJ.aJI) = (dij _dij')2 (13)

In other words, 3, (d—j) is the average distance between

dT and all other samples in the same class with respect to

th

the i " wavelet position and b (d,) is the minimum

average distance of dT to all samples in other classes with

respect to the i ™ wavelet position. The discriminant power
function with respect to the i ™ wavelet position, S,

returns a discriminant power score in the range of —1 to +1,
and indicates how well all data points can be assigned to
their own class in terms of the i ™ wavelet position.
Intuitively, data points are well-classified by wavelet
positions with a large silhouette statistic value, data tend to
lie between classes with small silhouette values, and data
points are poorly classified by those with negative values.
According to the perspective of the silhouette statistics, this
study will utilize S, to select a few important wavelet

positions for further cluster visualization and classification
analysis, i.e.,, sorting the mean silhouette statistics
(discriminating power function) in ascending order:

S.,<S., <--

® <2 (14)

N
S(p)n p:zl (Hdvm H2>ﬂ'NM)
m=1
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Figure 1. Silhouette statitics of 685 VET wavelet positions

Figure 1 shows the silhouette statistics, S;, i=1,---
( p=685
position. The largest silhouette statistics S; (= 0.5260)
leads us to select the first VETS wavelet position (1% VETS

Y
in this simulation) for each VET wavelet



wavelet position = 38" VET wavelet position = dgg ), the

second largest S; (= 0.5136) to the second position (™
VETS wavelet position = 85" VET wavelet position
d; ,,), and so on.

4. Description of Simulations

4.1 Damage in Truss Structure

The physical system is an eight-bay planar truss structure,
as shown in Figure 2. The truss structure is 4- m-long and
has two cross-braces in each bay. All truss members
comprise an aluminium solid bar whose Young's modulus
(E) is 70x10° N/m . Each strut is 2cm in diameter and the
length of each bay is 0.5m. Its boundary condition is
shown as a cantilevered truss that is fixed on a solid wall to
the left. In order to extract the dynamics of the system,
Gaussian random noise input applies as an excitation force
at point A as shown in the figure. The response of the
system, i.e.,, the end displacement of point S along the
direction of the arrow is collected as time-history data.

Here, we investigate two different types of damage. The
first one is an open-type (slot) crack, implying that no
stiffness variation occurs as the member experiences
compression and expansion. In other words, the strut will
have the same bending stiffness although the member
undergoes compression (crack closure) and expansion
(crack opening). On the other hand, a structure having a
breathing-type (fatigue) crack typically behaves as a
bilinear system, where the bending stiffness instantaneously
changes between two states, i.e., undamaged and damaged.
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Figure 2. Schematics of an eight-bay planar truss structure
with possible damage locations (D1~D4), displacement sensor
location (S), and actuator location (A).

Figure 2 also indicates four possible damage locations
(D1~ D4), which will be eventually localized through the
proposed wavelet-based algorithm. In order to simulate
structural defects or damage, the bending stiffness (EI) of
the beam element is reduced by 50% in elements D1
through D4 (i.e., 1.0 for healthy and 0.5 for damaged state).
For comparative study, the dynamic behaviour of two
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damage types, i.e., open- and breathing-type crack is also
realized in this simulation. In order to accommodate
breathing-type damage, a pair-comparison between two
nodes of damaged beam elements is performed at each time
step. According to the result of the current time step, i.e., the
sign of the relative displacement between adjacent nodes,
the elemental stiffness matrix is switched to a stiffness-
reduced one for the analysis of the next time step. In other
words, the compression and expansion modes of the
damaged strut member alternate between different stiffness
matrices in each time step. Consequently, nine scenarios are
investigated, i.e., four damage location cases for two
different damage types and one healthy case.

4.2 Characteristics of Simulation Data

The simulation generates sampled data at the rate of 1000
Hz for 20 s resulting in N = 20,000 data points. In order
to facilitate uncertainties in the severity of damage, the level
of reduced bending stiffness on the damaged truss member
is randomly perturbed from its mean value. Therefore, the
simulation is repeated 10 times to create a group of
randomly populated data sets for all healthy and damaged
cases, i.e., the data model of this simulation can be written
as

y, =f(t: 8)+e™, B =9(a.b.7.0) (15)

where Y, = [V, Vi, Yin] is @ vector of N equally-
spaced data points from the i ™ signal (i = 1,2,...,10);

om Dt Vb* —4ac
2a

signal-specific parameter for the i ™ signal. While this
variation in damage severity attempts to mimic unforeseen

influences in the process error, a white noise (&™) is
additionally imposed on each time-history data set to create
measurement noise. y; = f(t;;5)+&” can be used in
9()
unknown function of parameters such as damage location
a,, damage severity b , perturbation level of damage

, & vector of random noise; and £, , a

other expressions. In the above model, is an

severity y,, and type of damage p,, i.e., open or breathing
crack. The damage location parameter a, is defined as

a e A={0,1,23,4} (16)

where a, =0 indicates that the i ™ signal is from an
undamaged (healthy) case. Similarly, if & =1,2,3,and 4,
the signals are those arising from the damaged cases at
locations D1, D2, D3, and D4, respectively. b, and y,
are defined as



b = b+gi(b>, gi“” ~ N(0, (k -b/3)?) (17)
where
|1 i a=0
" 105 otherwise.
0 if a=0
= ] (18)
7 otherwise.

7, €' ={0.1,0.05,0.01}.

In the definition above, & is a realization of damage

severity perturbation, i.e., if the signal is from a healthy case
(& =0), there is neither damage severity nor perturbation

of damage severity. Unless the signal is from a healthy case,
&® has some value of damage severity perturbation with a
Vi
Pr(—7,-b<&® <y .b)=2(d(3)-05)=0.997

X2

parameter y, . Here, the value of is assumed

as

Le 2 dx . With regard to the damage

NP

for

where ®(z) = j_z

an crack case while

type, =0
o= f(tj;y.. (t)) for a breathing crack, which results in

open

the bilinear dynamic behaviour described in the previous
section.

As mentioned above, all signals of each damage case
include randomly perturbed damage severity (in this figure,
7, =0.1). The signal-to-noise ratio (SNR) is defined as

std(f)/ o, where std(f) is the standard deviation of the

discretized signal points and o is the standard deviation
of noise. In the data model, the realization of measurement
errors £ is defined as

std(f(t;a = 0))

™ N (O, 2
& (0,( SNR )7)

(19)
where std(f(t;a, =0)) is the standard deviation of the
signal from the healthy case.

5. Damage Localization Results

5.1 Clustering Analysis using VETS

Simulation studies are conducted for two different
damage types (open- and breathing-type cracks), three
values of damage severity variation parameters

(7, eI'={0.1,0.05,0.01}), and three SNR levels (7, 5,

and 3) on e™ . The signal from a damaged case with large
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7, and small SNR inherently exhibits more variable and
noisier signals in a class. Therefore, 18 different simulation
cases are generated. Furthermore, these cases are created for
each different damage condition, i.e., four different damage
locations, respectively. Note that only three SNR cases
are considered for the healthy condition.
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Figure 3. VETS clustering for the open crack with and
¥ =0.01and SNR =7.
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Figure 4. VETS clustering for the breathing crack with and
7 =0.01and SNR=7.

This study shows a few representative cases with the
most variable simulation setting (» =0.1 and SNR =3)

and the least variable one (y =0.01 and SNR) for both

open and breathing damage cases. Figures 7 through 10
show some of the results from the clustering analysis for
damage classification using the VETS wavelet positions.
The goal of VETS-based clustering is to discriminate the
existence, type, and location of damage in a truss structure.
Here, the first three VETS wavelet positions are used for
extracting damage-sensitive features for clustering. As
shown in Figure 3, four different damage locations, i.e.,
D1~D4 along with the healthy case are clearly localized in a
group when they are projected to the first three VETS
wavelet positions. Obviously, the damage locations in the



breathing-type damage cases (Figure 4) are less distinct than
those in the open-type ones (Figure 3) under the same
perturbation parameter and SNR . This trend becomes more
significant as » increases and SNR decreases, as shown

in Figures 5 and 6. With regard to an extreme case, the
largest process perturbation y=0.1 and the lowest

SNR =3 in conjunction with breathing-type damage
produced the worst discrimination result, as shown in
Figure 6. However, all 50 signals generated from the four
different damage locations and one healthy condition (ten
for each condition) have been sufficiently separated and
well clustered overall for both open- and breathing-type
damage. One can predict that as y increases above 0.1,

i.e., the uncertainty of damage severity increases, the size of
the VETS cluster will also increase. This trend can be used
to statistically determine the confidence level of a damage
location.
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Figure 5. VETS clustering for the open crack with and
y=0.1and SNR=3.
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Figure 6. VETS clustering for the breathing crack with and
y=0.1and SNR =3.
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6. Conclusions

This study uses an eight-bay planar truss structure to
validate the proposed damage localization method. Two
different types of damage, i.e., open and breathing
conditions are investigated to test the benefits of
wavelet-based signal processing. The simulated time
history responses are processed to extract damage-
sensitive wavelet positions, which are further developed
to classify damage locations by exploiting VETS-based
clustering analysis. The simulation results showed that
the proposed approach successfully classified and
localized the locations of stiffness-reduced damage in a
truss structure even with a significant amount of noise
and damage severity uncertainties.
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