• Title/Summary/Keyword: Statistical parameters

Search Result 2,683, Processing Time 0.032 seconds

Event date model: a robust Bayesian tool for chronology building

  • Philippe, Lanos;Anne, Philippe
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.2
    • /
    • pp.131-157
    • /
    • 2018
  • We propose a robust event date model to estimate the date of a target event by a combination of individual dates obtained from archaeological artifacts assumed to be contemporaneous. These dates are affected by errors of different types: laboratory and calibration curve errors, irreducible errors related to contaminations, and taphonomic disturbances, hence the possible presence of outliers. Modeling based on a hierarchical Bayesian statistical approach provides a simple way to automatically penalize outlying data without having to remove them from the dataset. Prior information on individual irreducible errors is introduced using a uniform shrinkage density with minimal assumptions about Bayesian parameters. We show that the event date model is more robust than models implemented in BCal or OxCal, although it generally yields less precise credibility intervals. The model is extended in the case of stratigraphic sequences that involve several events with temporal order constraints (relative dating), or with duration, hiatus constraints. Calculations are based on Markov chain Monte Carlo (MCMC) numerical techniques and can be performed using ChronoModel software which is freeware, open source and cross-platform. Features of the software are presented in Vibet et al. (ChronoModel v1.5 user's manual, 2016). We finally compare our prior on event dates implemented in the ChronoModel with the prior in BCal and OxCal which involves supplementary parameters defined as boundaries to phases or sequences.

State of the Art of Segment Lining in Shield Tunnel and Statistical Analysis of Its Key Design Parameters (쉴드터널 세그먼트 라이닝의 최신 기술동향과 핵심 설계항목의 통계 분석)

  • Chang, Soo-Ho;Lee, Gyu-Phil;Choi, Soon-Wook;Bae, Gyu-Jin
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.427-438
    • /
    • 2011
  • Segment lining is a key permanent lining structure to maintain the shield tunnel stability in shield tunnel operation. Moreover, segment lining generally accounts for the largest proportion in the shield tunnel construction costs. As a result, technical improvements to increase its economic feasibility have been actively carried out. This study aims to propose the development directions of high-performance segments from their recent cutting technologies. In addition, based on over 2,100 world-widely collected segment design data, a series of statistical analyses of segment key design parameters such as thickness, width and the number of divisions as well as segment materials were carried out to approximately estimate them in a design stage.

A Statistical Approach to Examine the Impact of Various Meteorological Parameters on Pan Evaporation

  • Pandey, Swati;Kumar, Manoj;Chakraborty, Soubhik;Mahanti, N.C.
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.515-530
    • /
    • 2009
  • Evaporation from surface water bodies is influenced by a number of meteorological parameters. The rate of evaporation is primarily controlled by incoming solar radiation, air and water temperature and wind speed and relative humidity. In the present study, influence of weekly meteorological variables such as air temperature, relative humidity, bright sunshine hours, wind speed, wind velocity, rainfall on rate of evaporation has been examined using 35 years(1971-2005) of meteorological data. Statistical analysis was carried out employing linear regression models. The developed regression models were tested for goodness of fit, multicollinearity along with normality test and constant variance test. These regression models were subsequently validated using the observed and predicted parameter estimates with the meteorological data of the year 2005. Further these models were checked with time order sequence of residual plots to identify the trend of the scatter plot and then new standardized regression models were developed using standardized equations. The highest significant positive correlation was observed between pan evaporation and maximum air temperature. Mean air temperature and wind velocity have highly significant influence on pan evaporation whereas minimum air temperature, relative humidity and wind direction have no such significant influence.

Statistical Characteristics of Fractal Dimension in Turbulent Prefixed Flame (난류 예혼합 화염에서의 프랙탈 차원의 통계적 특성)

  • Lee, Dae-Hun;Gwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.18-26
    • /
    • 2002
  • With the introduction of Fractal notation, various fields of engineering adopted fractal notation to express characteristics of geometry involved and one of the most frequently applied areas was turbulence. With research on turbulence regarding the surface as fractal geometry, attempts to analyze turbulent premised flame as fractal geometry also attracted attention as a tool for modeling, for the flame surface can be viewed as fractal geometry. Experiments focused on disclosure of flame characteristics by measuring fractal parameters were done by researchers. But robust principle or theory can't be extracted. Only reported modeling efforts using fractal dimension is flame speed model by Gouldin. This model gives good predictions of flame speed in unstrained case but not in highly strained flame condition. In this research, approaches regarding fractal dimension of flame as one representative value is pointed out as a reason for the absence of robust model. And as an extort to establish robust modeling, Presents methods treating fractal dimension as statistical variable. From this approach flame characteristics reported by experiments such as Da effect on flame structure can be seen quantitatively and shows possibility of flame modeling using fractal parameters with statistical method. From this result more quantitative model can be derived.

Asymptotic Analyses of a Statistical Multiplexor with Heterogeneous ATM Sources

  • Lee, Hyong-Woo;Mark, Jon-Wei
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.29-40
    • /
    • 1997
  • Two asymptotic analyses of the queue length distribution at a statistical multiplexor supporting heterogeneous exponential on-off sources are considered. The first analysis is performed by approximating the cell generation rates as a multi-dimensional Ornstein-Uhlenbeck process and then applying the Benes queueing formula. In the second analysis, w state with a system of linear equations derived from the exact expressions of the dominant eigenvalue of the matrix governing the queue length distribution. Assuming that there are a large number of sources, we obtain asymptotic approximations to the dominant eigenvalue. Based on the analyses, we define a traffic descriptor to include the mean and the variance of the cell generation rate and a burstiness measure. A simple expression for the quality of service (QoS) in cell loss rate is derived in terms of the traffic descriptor parameters and the multiplexor parameters (output link capacity and buffer size). The result is then used to quantify the factors determining the required capacity of a call taking the statistical multiplexing gain into consideration. As an application of the analyses, we can use the required capacity calculation for simple yet effective connection admission control(CAC) algorithms.

  • PDF

Analysis of Bioequivalence Study using a Log-transformed Model (로그변환 모델에 따른 생물학적 동등성 판정 연구)

  • 이영주;김윤균;이명걸;정석재;이민화;심창구
    • YAKHAK HOEJI
    • /
    • v.44 no.4
    • /
    • pp.308-314
    • /
    • 2000
  • Logarithmic transformation of pharmacokinetic parameters is routinely used in bioequivalence studies based on pharmacokinetic and statistical grounds by the United States Food and Drug Administration (FDA), European Committee for Proprietary Medicinal Products (CPMP), and Japanese National Institute of Health and Science (NIHS). Although it has not yet been recommended by the Korea Food and Drug Administration (KFDA), its use is becoming increasingly necessary in order to harmonize with international standards. In the present study, statistical procedures for the analysis of a bioequivalence based on the log transformation and a related SAS procedure were demonstrated in order to aid the understanding and application. The AUC parameters used in this demonstration were taken from the previous bioequivalence study for two aceclofenac tablets, which were performed in a single-dose crossover design. Analysis of variance (ANOVA), statistical power to detect 20% difference between the tablets, minimum detectable difference and confidence intervals were all assessed following log-transformation of the data. Bioequivalence of two aceclofenac tablets was then estimated based on the guideline of FDA. Considering the international effort for harmaonization of guidelines for bioequivalence tests, this approach may require a further evaluation for a future adaptation in the Korea Guidelines of Bioequivalence Tests (KGBT).

  • PDF

Assessment of Water Quality using Multivariate Statistical Techniques: A Case Study of the Nakdong River Basin, Korea

  • Park, Seongmook;Kazama, Futaba;Lee, Shunhwa
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.197-203
    • /
    • 2014
  • This study estimated spatial and seasonal variation of water quality to understand characteristics of Nakdong river basin, Korea. All together 11 parameters (discharge, water temperature, dissolved oxygen, 5-day biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, electrical conductivity, total nitrogen, total phosphorus, and total organic carbon) at 22 different sites for the period of 2003-2011 were analyzed using multivariate statistical techniques (cluster analysis, principal component analysis and factor analysis). Hierarchical cluster analysis grouped whole river basin into three zones, i.e., relatively less polluted (LP), medium polluted (MP) and highly polluted (HP) based on similarity of water quality characteristics. The results of factor analysis/principal component analysis explained up to 83.0%, 81.7% and 82.7% of total variance in water quality data of LP, MP, and HP zones, respectively. The rotated components of PCA obtained from factor analysis indicate that the parameters responsible for water quality variations were mainly related to discharge and total pollution loads (non-point pollution source) in LP, MP and HP areas; organic and nutrient pollution in LP and HP zones; and temperature, DO and TN in LP zone. This study demonstrates the usefulness of multivariate statistical techniques for analysis and interpretation of multi-parameter, multi-location and multi-year data sets.

ESTABLISHMENT OF A NEURAL NETWORK MODEL FOR DETECTING A PARTIAL FLOW BLOCKAGE IN AN ASSEMBLY OF A LIQUID METAL REACTOR

  • Seong, Seung-Hwan;Jeong, Hae-Yong;Hur, Seop;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • A partial flow blockage in an assembly of a liquid metal reactor could result in a cooling deficiency of the core. To develop a partial blockage detection system, we have studied the changes of the temperature fluctuation characteristics in the upper plenum according to changes of the t10w blockage conditions in an assembly. We analyzed the temperature fluctuation in the upper plenum with the Large Eddy Simulation (LES) turbulence model in the CFX code and evaluated its statistical parameters. Based on the results of the statistical analyses, we developed a neural network model for detecting a partial flow blockage in an assembly. The neural network model can retrieve the size and the location of a flow blockage in an assembly from a change of the root mean square, the standard deviation, and the skewness in the temperature fluctuation data. The neural network model was found to be a possible alternative by which to identify a flow blockage in an assembly of a liquid metal reactor through learning and validating various flow blockage conditions.

A Comparative Study on the Multivariate Thomas-Fiering and Matalas Model (다변량 Thomas-Fiering 모형과 Matalas 모형의 비교연구)

  • 이주헌;이은태
    • Water for future
    • /
    • v.24 no.4
    • /
    • pp.59-66
    • /
    • 1991
  • Abstract The purpose of the synthetic of monthly river flows based on the short-term observed data by means of multivariate stochastic models is to provide abundunt input data to the water resources systems of which the system performance and operation policy are to be determined beforehand. In this study, multivariate Thomas-Fiering and Matalas models for synthetic generation based on stream flows in neihboring basin were employed to check if it can be applide in the modeling of monthly flows. Statistical parameters estimated by Method of Moment and Fourier Series Analysis respectively were reproduced for statistical features. For comparisons the statistical parameters of the generated monthly flow by each model were compared with those of the observed monthly flows. Results of this study suggest that the application of Matalas model for synthetic generation of monthly river flows can be adapted.

  • PDF

Tests based on EDF statistics for randomly censored normal distributions when parameters are unknown

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.5
    • /
    • pp.431-443
    • /
    • 2019
  • Goodness-of-fit techniques are an important topic in statistical analysis. Censored data occur frequently in survival experiments; therefore, many studies are conducted when data are censored. In this paper we mainly consider test statistics based on the empirical distribution function (EDF) to test normal distributions with unknown location and scale parameters when data are randomly censored. The most famous EDF test statistic is the Kolmogorov-Smirnov; in addition, the quadratic statistics such as the $Cram{\acute{e}}r-von$ Mises and the Anderson-Darling statistic are well known. The $Cram{\acute{e}}r-von$ Mises statistic is generalized to randomly censored cases by Koziol and Green (Biometrika, 63, 465-474, 1976). In this paper, we generalize the Anderson-Darling statistic to randomly censored data using the Kaplan-Meier estimator as it was done by Koziol and Green. A simulation study is conducted under a particular censorship model proposed by Koziol and Green. Through a simulation study, the generalized Anderson-Darling statistic shows the best power against almost all alternatives considered among the three EDF statistics we take into account.