• Title/Summary/Keyword: Statistical methods

Search Result 11,652, Processing Time 0.033 seconds

An Integrated Sequential Inference Approach for the Normal Mean

  • Almahmeed, M.A.;Hamdy, H.I.;Alzalzalah, Y.H.;Son, M.S.
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.4
    • /
    • pp.415-431
    • /
    • 2002
  • A unified framework for statistical inference for the mean of the normal distribution to derive point estimates, confidence intervals and statistical tests is proposed. This optimal design is justified after investigating the basic information and requirements that are possible and impossible to control when specifying practical and statistical requirements. Point estimation is only credible when viewed in the larger context of interval estimation, since the information required for optimal point estimation is unspecifiable. Triple sampling is proposed and justified as a reasonable sampling vehicle to achieve the specifiable requirements within the unified framework.

Exploratory Methods for Joint Distribution Valued Data and Their Application

  • Igarashi, Kazuto;Minami, Hiroyuki;Mizuta, Masahiro
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.265-276
    • /
    • 2015
  • In this paper, we propose hierarchical cluster analysis and multidimensional scaling for joint distribution valued data. Information technology is increasing the necessity of statistical methods for large and complex data. Symbolic Data Analysis (SDA) is an attractive framework for the data. In SDA, target objects are typically represented by aggregated data. Most methods on SDA deal with objects represented as intervals and histograms. However, those methods cannot consider information among variables including correlation. In addition, objects represented as a joint distribution can contain information among variables. Therefore, we focus on methods for joint distribution valued data. We expanded the two well-known exploratory methods using the dissimilarities adopted Hall Type relative projection index among joint distribution valued data. We show a simulation study and an actual example of proposed methods.

Evaluations of Museum Recommender System Based on Different Visitor Trip Times

  • Sanpechuda, Taweesak;Kovavisaruch, La-or
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.2
    • /
    • pp.131-136
    • /
    • 2022
  • The recommendation system applied in museums has been widely adopted owing to its advanced technology. However, it is unclear which recommendation is suitable for indoor museum guidance. This study evaluated a recommender system based on social-filtering and statistical methods applied to actual museum databases. We evaluated both methods using two different datasets. Statistical methods use collective data, whereas social methods use individual data. The results showed that both methods could provide significantly better results than random methods. However, we found that the trip time length and the dataset's sizes affect the performance of both methods. The social-filtering method provides better performance for long trip periods and includes more complex calculations, whereas the statistical method provides better performance for short trip periods. The critical points are defined to indicate the trip time for which the performances of both methods are equal.

Robustness, Data Analysis, and Statistical Modeling: The First 50 Years and Beyond

  • Barrios, Erniel B.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.543-556
    • /
    • 2015
  • We present a survey of contributions that defined the nature and extent of robust statistics for the last 50 years. From the pioneering work of Tukey, Huber, and Hampel that focused on robust location parameter estimation, we presented various generalizations of these estimation procedures that cover a wide variety of models and data analysis methods. Among these extensions, we present linear models, clustered and dependent observations, times series data, binary and discrete data, models for spatial data, nonparametric methods, and forward search methods for outliers. We also present the current interest in robust statistics and conclude with suggestions on the possible future direction of this area for statistical science.

Problems and Remedies of Using Statistical Methods in Papers of Public Administration (행정학 논문에서 통계기법 사용의 문제점과 개선방안)

  • JaeGal, Don;Lee, Jae-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.1
    • /
    • pp.79-87
    • /
    • 2001
  • This paper tries to comprehensively investigate the problems of using methods especially statistical methods, which are currently emphasizing and controversial issues in the study of public administration, focusing on papers in Korean Public Administration Review for five years(1994 through 1998). Based upon the investigation, the purpose of the paper is to identify problems and recommend remedies in the education of statistical methods for the field of public administration.

  • PDF

STATISTICAL EVIDENCE METHODOLOGY FOR MODEL ACCEPTANCE BASED ON RECORD VALUES

  • Doostparast M.;Emadi M.
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.2
    • /
    • pp.167-177
    • /
    • 2006
  • An important role of statistical analysis in science is interpreting observed data as evidence, that is 'what do the data say?'. Although standard statistical methods (hypothesis testing, estimation, confidence intervals) are routinely used for this purpose, the theory behind those methods contains no defined concept of evidence and no answer to the basic question 'when is it correct to say that a given body of data represent evidence supporting one statistical hypothesis against another?' (Royall, 1997). In this article, we use likelihood ratios to measure evidence provided by record values in favor of a hypothesis and against an alternative. This hypothesis is concerned on mean of an exponential model and prediction of future record values.

A review of tree-based Bayesian methods

  • Linero, Antonio R.
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.543-559
    • /
    • 2017
  • Tree-based regression and classification ensembles form a standard part of the data-science toolkit. Many commonly used methods take an algorithmic view, proposing greedy methods for constructing decision trees; examples include the classification and regression trees algorithm, boosted decision trees, and random forests. Recent history has seen a surge of interest in Bayesian techniques for constructing decision tree ensembles, with these methods frequently outperforming their algorithmic counterparts. The goal of this article is to survey the landscape surrounding Bayesian decision tree methods, and to discuss recent modeling and computational developments. We provide connections between Bayesian tree-based methods and existing machine learning techniques, and outline several recent theoretical developments establishing frequentist consistency and rates of convergence for the posterior distribution. The methodology we present is applicable for a wide variety of statistical tasks including regression, classification, modeling of count data, and many others. We illustrate the methodology on both simulated and real datasets.

Intensive comparison of semi-parametric and non-parametric dimension reduction methods in forward regression

  • Shin, Minju;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.5
    • /
    • pp.615-627
    • /
    • 2022
  • Principal Fitted Component (PFC) is a semi-parametric sufficient dimension reduction (SDR) method, which is originally proposed in Cook (2007). According to Cook (2007), the PFC has a connection with other usual non-parametric SDR methods. The connection is limited to sliced inverse regression (Li, 1991) and ordinary least squares. Since there is no direct comparison between the two approaches in various forward regressions up to date, a practical guidance between the two approaches is necessary for usual statistical practitioners. To fill this practical necessity, in this paper, we newly derive a connection of the PFC to covariance methods (Yin and Cook, 2002), which is one of the most popular SDR methods. Also, intensive numerical studies have done closely to examine and compare the estimation performances of the semi- and non-parametric SDR methods for various forward regressions. The founding from the numerical studies are confirmed in a real data example.