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An Integrated Sequential Inference Approach
for the Normal Mean
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ABSTRACT

A unified framework for statistical inference for the mean of the normal
distribution to derive point estimates, confidence intervals and statistical
tests is proposed. This optimal design is justified after investigating the basic
information and requirements that are possible and impossible to control
when specifying practical and statistical requirements. Point estimation is
only credible when viewed in the larger context of interval estimation, since
the information required for optimal point estimation is unspecifiable. Triple
sampling is proposed and justified as a reasonable sampling vehicle to achieve
the specifiable requirements within the unified framework.

Keywords. Confidence intervals, cost functions, decision theory, fixed precision
hypothesis tests, Fisher information, loss functions, opportunity cost, point esti-
mation, regret, risk functions, sampling cost, sequential sampling, squared error
loss, triple sampling, type II error.
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1. Introduction

The literature in sequential analysis usually considers two main methodolo-
gies to tackle estimation problems: (1) point estimation, where a specific loss
function is assumed to assess the encountered risk; (2) fixed width confidence
interval estimation to attain a given nominal coverage value. To the best of our
knowledge, these two methodologies have been treated as completely separate
approaches to inference for the parameter(s) in the situations examined and it
seems that few attempts have been made to combine these two methodologies
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under a single unified framework to achieve maximal use of the available sample
information to handle both problems simultaneously. It is certainly reasonable
to inquire as to whether and when one might want to combine the criteria for
point and fixed width confidence interval estimation. After all, if (for example)
the primary focus in a given problem is on point estimation, should one even be
concerned about confidence intervals (or vice versa)? In our view, the answers
to both these questions should be a resounding “yes”. We take this position in
light of considering the most basic, inherent commonalities of point and interval
estimators. In Section 2 we lay down the philosophical groundwork for determin-
ing what information can and can’t be learned by sampling in the context of a
“purely” point estimation problem. We conclude that inference in that context
is essentially without credible content. In Section 3 we propose a first approach
to credible estimation based on fixed width confidence interval estimators with
specified coverage, which points the way towards credible point estimators as
well. A second approach to credible testing based on confidence intervals con-
trolled for type II error is also proposed along similar lines in Section 3. Section
4 emphasizes the worth of triple sampling as a credible vehicle for the approaches
to inference outlined in Sections 3. Simulated results in typical situation to inves-
tigate the performance of the integrated triple sampling with discussion are also
presented in Section 4. Some final remarks and discussion appears in Section 5.

2. The Unknowable Cost of Perfect Information for Point
Estimation of the Mean

Let X, X5, ... be a sequence of independent and normally distributed random
variables with mean y and variance o2, both unknown. Suppose further that a
random sample X, X», ..., X, of size (n > 2) is available, from which we propose
the usual sample mean X, to estimate y. Moreover, we assume that the incurred
loss (or cost) can be reasonably represented by

L, =A(7n—u)2+cn, (2.1)

where the constant A(> 0). We elaborate more on the interpretation of A shortly.
The risk (or expected cost) associated with (2.1) is given by
R, = E(L,) = AE (X, — u)2 +cn
= A (0*/n) +cn.
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The optimal sample size that minimizes the expected cost in (2.3) is given by

nt = (Vajc) o (2.4)

from which we determine that from which we determine that
A=cn*I(n*, 02) . (2.5)

The term cn* in (2.5) is the cost of optimal sampling and the term I(n*,o?) =
n*/a? is the perfect information (in Fisher’s sense), PI. By this designation we
mean that PI represents the optimal information, i.e., the amount of information
required to explore a unit of variance in order to achieve the minimum ezpected
cost (risk). Hence, A is the cost of perfect information, Cpy, i.e., the mone-
tary amount that needs to be paid to achieve the minimum risk, contrarily to
what has been said in the literature regarding A as the known cost of estima-
tion. See for example Robbins (1959), Starr (1966), Starr and Woodroofe (1968),
Woodroofe (1977), Ghosh and Mukhopahyay (1979, 1980), Chow and Martinsek
(1980), Chow and Yu (1981), Mukhopadhyay (1985), Woodroofe (1985, 1987),
Mukhopadhyay et al. (1987), Hamdy et al. (1988), Martinsek (1988), Almah-
meed and Hamdy (1990) and Hamdy et al. (1996), the interpretation of A in
(2.5) does serve to emphasize that A reflects both estimation error and sampling
cost.

Direct substitution of A in (2.5) into the loss function in (2.1) yields

L,=cn*I (n*, 02) (Yn — u)2 +cn (2.6)
and the risk in (2.3) becomes
R, = E(L,) =cn*I (n*,a2) E(X, - u)2 + en. (2.7)

Now suppose that the random sample used to obtain X, in (2.7) is of arbitrary
size n. It follows that E(X, — u)? = I"Y(n,0?), where I(n,o?) is the (Fisher)
sample information, SI,. The corresponding risk in (2.7) can be expressed as

R, = cen* (PI/SI,) + cn. (2.8)

The quantity (PI/SI,) is the relative information, RI,. In words, R, is a mea-
sure of the estimation (but not sampling) efficiency of the sample information
compared to the perfect information. When n = n*, see Figure 1 for example
where n* = 20, A=$4.01, c=%1 and o2 = 100, the sample information is as eff-
cient as the perfect information (with the term efficient we mean: the ratio of the
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amount of sampling information compared to the amount of perfect information)
since RI, = 1 and R,- = 2cn*, which is the optimal risk (minimum expected
cost). On the other hand, when n < n*, the sample information is less efficient
than the perfect information since RI, > 1. And when n > n*, the sample
information is more efficient than the perfect information since RI, < 1. For
any n # n*, we have R, > R,-. Apparently although (anomaly) that R, > R,
when n > n*, the corresponding sample information is still considered to be more
efficient than the perfect information. This is due to the fact that over sampling
is good for estimation, per se, but bad in terms of sampling costs. In the sense
that the sample information represents an estimate of the perfect information,
S1I, is also termed the imperfect information, I1,.

Another way to compare the values of the sample I, and the PI is through
the expected cost of missed opportunity, which we express as

Ryiss = (Rn — Rpe) = c{n" (R, — 1) + (n —n")}. (2.9)

[Other names for Rysrss (up to sign) appearing in the literature include the “re-
gret” and the “opportunity cost”. However, since it is true that you can’t regret
what you never have, and false that missing the mark is an “opportunity”, our
terminology seems preferable.] This measure is conceptually useful since it clearly
indicates the separate effects of potential estimation and sampling deficiencies for
both under sampling and over sampling.
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Most of the work done in the area of multistage point estimation of the nor-
mal mean have involved the assumption of complete knowledge of the constant A.
As we have shown in (2.5) for the case of squared error loss in (2.1), such claims
tacitly imply that the decision maker knows the value of the ratio of the square
of the optimal sample size to the population variance or, in our present termi-
nology, that the decision maker knows the cost of perfect information. Is this a
viable assumption in the context of obtaining a point estimator for x4 via mul-
tistage sampling, the basic premise of which is that o2 is completely unknown?
For that matter, is it a viable assumption even in fixed sample size point esti-
mation applications where the decision maker’s experience with previous data
leads him/her to believe that o? is (at least approximately) “known”? In either
case, and regardless of whether multistage or fixed size sampling is actually used,
it is logically apparent that the assumption of complete (or even approximate)
knowledge of the value of A in a “purely” point estimation problem begs the
question with or without knowledge of 0. Thus, the practice of pre-specifying
the value of A in point estimation applications inevitably leads to “spuriously
optimal” sample sizes. This is because their determination via (2.4) is based on a
self-fulfilling criterion, which is unrelated to, and thereby artificially, and myste-
riously restricts the population of inference. In effect, the sampled population is
not the target population that needs to be explored freely through the sampling
procedure in the first place. In particular, if the resulting sample information is
less than the perfect information, under sampling will likely occur and the cor-
responding estimator will have larger variance compared to an estimator based
on the true [but underestimated (or under explored)] optimal sample size. While
if the resulting sample information is greater than the perfect information, over
sampling will likely occur and the sampling costs will be larger compared to what
they would have been had the true [but overestimated (or over explored)] optimal
sample size been employed.

In the next section, we elaborate further on both the specific consequences of
arbitrarily specifying A in the contexts of fixed width confidence interval estima-
tors and tests of hypotheses. Further a knowable portion of A can be specified to
satisfy practically and statistically meaningful target requirements within those
inferential frameworks.
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3. The Cp; for Both Confidence Interval and Tests for the
Normal Mean

In constructing a fixed 2d width confidence interval for the normal mean pu
with unknown variance o2 such that the coverage probability is at least 100(1 —
a)%, it is natural to employ the interval I,, = (X, — d, X, + d). To satisfy the
requirements that

P(/I‘EIn):P(*dsyn_#Sd)Zl—a

which implies that 2®(y/nd/o) — 1 > 2®(a) — 1, where ®() is the cumulative
distribution function and a is the 100(1—«/2)"* percentile of the standard normal
distribution. Hence, the corresponding optimal sample size is

n* = (a/d)? o>. (3.1)

Comparing (3.1) with (2.4) and (2.5) provides the cost of perfect information
as
Cpr = c(a/d)* o? (3.2)

and the corresponding perfect information is
PI =1 (n* 0% = (a/d)’. (3.3)

We see immediately that the perfect information in (3.3) for the point estimation
of the normal mean in the context of the fixed width confidence interval is com-
pletely knowable and it reflects both the influence of the target population and
the required precision through the constants a and d.

Furthermore, assume that we need to test the null hypothesis Hy,: pu € I,
versus the alternative hypothesis Hy, : p ¢ I,. To develop theory for testing
the hypothesis using the already constructed confidence interval we assume that
Ho,ni p = po € I, versus the alternative hypothesis Hypn: p = po £d(1+k) ¢ I,
for all ¥ > 0. Under the above decision rule, Hy, is rejected only if pg lies
outside the interval. To develop theory, we assume that the specified value of ug
is located in the center of the interval to provide equal probability of type II error
for equidistant shifts in the mean occurring outside the interval. See for example
Son et al. (1997). We also emphasize that under the null hypothesis all values
of p inside the interval equally represent the true value of p. Consequently, the
alternative hypothesis only makes sense for shifts occurring outside the interval
I,. Here our main objective is to control type II error, see for example Son et
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al. (1997), Costanza et al. (1995) and Hamdy (1997), therefore we impose the
restriction that the probability of committing such an error when the true mean
is shifted away by an amount +d(1 + k) from pg for a given £ is at most B(k).
It follows that the optimal sample size required to ensure the desired nominal
probability and at the same time provide protection against type II error (see
Kupper and Hafner, 1989) is given by

n* = {(a +b)/d(1 + k)}? o2, (3.4)

where b is the 100(1 — 8(k))®" percentile of the standard normal distribution. It
is obvious in (3.4) that for k close to 0, we would expect a coverage probability
greater than the required nominal value. By setting k = 0 in (3.4) to obtain an
upper bound for the optimal sample size given by

n* = {(a +b)/d}? > (3.5)
It follows that the corresponding cost of perfect information is
Cpr = c¢{(a +b)/d}* o2 (3.6)
and the corresponding perfect information is
PI = {(a+0b)/d}>. (3.7)

Consequently, incorporating the cost of perfect information in the loss func-
tion in (2.1) would serve several objectives. It still provides 2d fixed width con-
fidence interval for the mean p with coverage probability at least the nominal
value. Moreover, it controls the probability of type II error as required. Finally,
it also provides a point estimator for the mean y with minimum expected cost.

However, the optimal sample size in (3.5) required to achieve the above ob-
jectives (of having a confidence interval of at least the nominal value and at the
same time controlling for type Il error) is inherently unknown, for o2 is essentially
unknown. Therefore we resort to multistage methods of sampling techniques to
estimate o2 via estimation of n* and in sequel propose the required point and
interval estimation for u. The triple sampling technique provides a unified sam-
pling framework within which all objectives can be achieved. Unlike Stein (1945)
and Cox (1952) two-stage sampling procedures, triple sampling technique was
developed to overcome the problem of oversampling, especially when the initial
sample size is chosen much less than the optimal sample size. On the other hand,
triple sampling enjoys the asymptotic efficiency of Anscombe (1953), Robbins
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(1959) and Chow and Robbins (1965) one-by-one sequential sampling. There-
fore, sampling in three stages was engineered to serve two main purposes, to
achieve operational savings made possible by sampling in batches by utilizing
Stein (1945) and Cox (1952) two-stage sampling, and at the same time maintain
the asymptotic efficiency of one-by-one sequential sampling. In the following sec-
tion we mimic n* in (3.5) and describe the triple sampling technique along the
lines of Hall (1981, 1983), Hamdy (1988) and Woodroofe (1987).

4. An Integrated Triple Sampling Procedure for Statistical
Inference for u

The triple sampling procedure begins with a fixed sample size X1, Xo,..., Xp,
m > 2, from which we propose X,, and S’?n as initial estimates for both p and
o? respectively. The second stage sample size is then decided for, according to

the rule
N; = max {m, [y(a + b)2S2,/d*]}, (4.1)

where 0 < v < 1 is the design factor which represents the fraction of n*(yn*)
to be estimated in this stage and [-] is the integer function. The design factor v
was introduced by Hall (1981) to reduce the possibility of over-sampling during
the second stage. If the decision is to continue sampling, a second sample of size
N; — m is to be taken and augmented with the first sample to bring the final
stage sample size to

N = max {Ny,[(a + b)25%, /d*] + 1}. (4.2)

If necessary, we continue to observe N —N; further observations and terminate the
sampling process. Upon realization of N, we compute X y as the point estimate
for p. Accordingly, we construct the type II controlled triple sampling interval
In = (Xy —d, Xy + d) for u. The following Theorem 4.1 provides the large
sample feature of the triple sample size V.

Theorem 4.1. Let g(> 0) be continuously twice differentiable function in a
neighborhood of n* such that sup,>, 19" (n)|=0(lg" (n*)|), then

The expectation of Taylor series expansion of ¢(/V) around n* and the asymptotic
results of Hall (1981) and Hamdy (1988) that E(N) = n* — 2y~ 4+ 0.5 + o(1),

B(g(V)) = g(n) + 277 { (v = 9)g (") + 20" (n") } + 0 (a7 |¢" (n")
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Var(N) = 2y~ n* + o(d™?) and E|N — n*|3 = o(d™*) as well as the assumption
that ¢ is bounded, provide the statement of Theorem 4.1.

Also, conditioning on N and write E(X y) = E{E(X n|N = n)} and the fact
that the event {N = n} and X, are independent for all n = m,m + 1,..., it
is easily shown that E(Xy) = u, which proves that the triple sampling mean
X n is unbiased for the population mean p. Again, we condition on N and write
Var(X ) as

Var(Xy) = E{Var(Xy|N =n)} + Var {E (Xny | N =n)}
= u?Var(N™Y) + c2E(N1).

Now, by applying Theorem 4.1 and ignoring terms of order higher than o(d?),
it can be proved that Var(Xy) = (¢%/n*) — (v — 8)(0?/2yn*?) + o(d*). More-
over, it is not hard to show that the distribution of Zy = (N —n*)//2y"In* is
asymptotically N(0,1) via the moment generating function E(e??~) and Theorem
4.1.

Theorem 4.2. The coverage probability of Iy is given by
P(p € In) = {20(a + b) — 1} — Qo(n*,7) + o(d?),

where Qo(n*,v) = (a + b)d(a + b){(a + b)%? — v + 5}(2yn*)"1, and ¢(-), ®(-) are
the standardized probability density and cumulative distribution function of the
normal distribution, respectively.

The proof of Theorem 4.2 is direct application of Theorem 4.1 since P(u € In) =
2E{®(dv/N/o)} — 1. Moreover, it is also evident that

P(u € In) = {2®(a + b) — 1} Qo(n*,7) + o(d?) > (1 — @) — Qo(n*,7) + o(d®)

and for large n* (as d — 0) the quantity Qo(n*,~y) — 0 and hence, P(u € In) >
(1—a)+o0(d?). Simulation results presented in Section 5 support this asymptotic
behavior of the confidence interval even for small to moderate values of n*. The
following Theorem 4.3 provides the large sample type Il error probability function.

Theorem 4.3. For the controlled triple sampling procedure (4.1) and (4.2), and
for fized n* in (3.5) and any k > 0, the operating characteristic function is given
by

Bk) = & {~k(a+b)} — & {~(2+k)(a+b)} +Q1(n", 7, k) + Q2(n, 7, k) + o(d?),
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as d — 0, where
Q1(n*,v, k) = (dyn*) " k(a + b)p(—k(a + b)) {k*(a + b)* — v + 5}
and Qo(n*, v, k) is given by
(dyn*) 12 + k)(a + B)p(—(2 + k)(a + b)) {(2 + k*)(a + b)® — 7y + 5} .
To prove Theorem 4.3, we write

Bk) = P(p€InHo) =P{Xn—d<pu<Xy+d|p=po+dl+k)}
oo o)) 5o ()

and make use of Theorem 4.1, then the statement of Theorem 4.3 is straight
forward.

It is clear from Theorem 4.3 that for ¥ = 0, we have 5(0) = 0.5. It is
also evident that (k) approaches the specific target value of 8 quickly in the
interval 0.4 < k < 0.5. We discuss the moderate sample performance of the
above integrated triple sampling technique in the following section.

5. Simulation Study

Since the results of Theorems 4.1 to 4.3 are asymptotic in nature, Monte Carlo
investigation in typical situations was performed to provide a feel regarding the
moderate sample size performance of the integrated triple sampling technique
proposed in Section 4. We considered sampling from standard normal distribution
where 4 = 0 and o = 1. We also let the optimal sample size n* range from small
to large (5, 10, 15, 20, 30, 50, 100, 150, 200, 500, 1000) while the design factor
~ was fixed to 0.3, 0.5 and 0.8 in all cases. The targeted coverage probability
was set to 0.90, 0.95 and 0.99, and the type II error 8 = 0.05. We took the
étarting sample size m to be 5, 10, 15 and 20. However, we only report the cases
for o = 0.05, v = 0.5 and m = 5, 10 and 15. Tables (I-1) to (III-2) present the
simulation results of the integrated triple sampling. As indicated in all tables,
the triple sampling sample size N is very close to the optimal sample size n*. The
triple sampling point estimate Avg(X) as shown in all tables provides credible
estimate to the mean of the normal distribution 4 = 0. It is also obvious that the
estimated coverage probability Pis strictly greater than the nominal targeted
value 0.95. Tables (I-2), (II-2) and (III-2) present the simulated type II errors
of the integrated triple sampling procedure. As noted in all tables the estimated
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type II error 8(k) is controlled to zero outside the interval (k > 0) as expected.
However, when the shift (dk) is downward, we expect large values of type II errors
inside the interval which decreases as we approach the boundaries, i.e., & — 0.
It is also evident that as the pilot sample size m increases all estimated values
approach the targeted values. The bias in N decreases and the Avg(Z) attains
the true value 0 as m increases.

6. Conclusions

We have proposed an integrated triple sampling procedure, which provides
a credible point estimate to the mean of the normal distribution. Moreover,
it guarantees a fixed width confidence interval for the unknown mean with a
prescribed confidence coefficient at least the nominal value. In addition, the
constructed integrated triple sampling procedure insures the protection of the
interval against type II error. We recommend the use of the proposed procedure
in practical implementation. For example, suppose that a quality characteristics
in a continuous manufacturing process is normally distributed with mean u and
variance o2, both unknown. Suppose also that it is required to estimate u by a
confidence interval such that the precision, +d, and the coverage probability is
at least 100(1 — )%, of the interval are determined according to manufacturing
specifications. The specific objective might be to reliably establish the center line
in X-chart to be employed in a planned quality monitoring scheme.
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TABLE (I-1) Three stage sampling for the mean of N(0, 1)
a = 0.05 m =25, v=0.5, number of simulations = 5000

d n* N S.E.(N) | Auvg(z) | S.E.(z) )
1.7531 5 6.3070 | 0.0290 | —0.0002 | 0.4182 | 1.0000
1.2396 10 9.5030 | 0.0630 | —0.0044 | 0.3562 | 0.9986

1.0121 15 13.0190 | 0.0970 0.0010 | 0.3177 | 0.9932
0.8765 20 17.2180 0.1300 —0.0009 | 0.2919 | 0.9906
0.7157 30 26.3930 0.1890 0.0007 | 0.2388 | 0.9892
0.5544 50 45.8440 | 0.2770 —0.0002 | 0.1782 | 0.9896
0.3920 100 95.2530 0.4330 —0.0009 | 0.1207 | 0.9908
0.3201 150 146.8570 0.5670 —0.0012 | 0.0971 | 0.9948
0.2772 200 198.1650 | 0.7020 0.0004 | 0.0788 | 0.9958
0.1753 500 507.8800 1.3240 —0.0002 | 0.0481 | 0.9992
0.1240 | 1000 | 1021.2310 2.1790 —0.0001 | 0.0318 | 0.9998

TABLE (I-2) Simulated values of B (type II error) for different values of k

Downward Shift k

n" 0.1 0.05 0.01 0.001 0
5 1 0.3284 | 0.1632 | 0.0338 | 0.0040 | 0.0000
10 | 0.2954 | 0.1490 | 0.0294 | 0.0036 | 0.0000
15 | 0.2600 | 0.1302 | 0.0252 | 0.0018 | 0.0000
20 | 0.2684 | 0.1378 | 0.0288 | 0.0028 | 0.0000
30 | 0.2740 | 0.1346 | 0.0260 | 0.0030 | 0.0000
50 | 0.2738 | 0.1414 | 0.0246 { 0.0024 | 0.0000
100 { 0.2904 | 0.1486 | 0.0278 | 0.0030 | 0.0000
150 | 0.3000 | 0.1522 | 0.0258 | 0.0034 | 0.0000
200 | 0.3000 | 0.1490 | 0.0306 | 0.0036 | 0.0000
500 | 0.2970 | 0.0498 | 0.0272 | 0.0024 | 0.0000
1000 | 0.3084 | 0.1602 | 0.0308 | 0.0022 | 0.0000

NOTE : The estimated type II errors B(k)’s are all zero when k > 0.
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TABLE (II-1) Three stage sampling for the mean of N(0,1)
a = 0.05, m =10, v = 0.5, number of simulations = 5000

*

N

n S.E.(N) | Auvg(®) | S.E.(%) P
1.7631 5 10.0810 | 0.0070 0.0078 | 0.3171 | 1.0000
1.2396 10 11.9340 | 0.0430 | —0.0018 | 0.2996 | 1.0000
1.0121 15 15.4190 | 0.0720 | —0.0057 | 0.2671 | 0.9996
0.8765 20 19.3390 | 0.0970 [ —0.0009 | 0.2467 | 0.9990
0.7157 30 27.3170 | 0.1450 0.0007 | 0.2092 | 0.9974
0.5544 50 46.0080 | 0.2240 | —0.0001 | 0.1616 | 0.9964
0.3920 | 100 95.4930 | 0.3430 | —0.0011 | 0.1085 | 0.9980
0.3201 | 150 | 146.4460 | 0.4140 0.0007 | 0.0846 | 0.9994
0.2772 | 200 | 196.5800 | 0.4810 0.0010 | 0.0727 | 0.9992
0.1753 | 500 | 498.3810 | 0.7830 0.0007 | 0.0455 | 0.9994
0.1240 | 1000 | 1002.2590 | 1.2240 | —0.0003 | 0.0314 | 0.9998

TABLE (11-2) Simulated values of 3 (type II error) for different values of k

Downward Shift k

n" 0.1 0.05 0.01 0.001 0
5 | 0.4250 | 0.2168 | 0.0406 | 0.0042 | 0.0000
10 | 0.3270 | 0.1680 | 0.0342 | 0.0024 | 0.0000
15 | 0.3048 | 0.1592 | 0.0324 | 0.0026 | 0.0000
20 | 0.2922 | 0.1512 | 0.0276 | 0.0028 | 0.0000
30 | 0.2834 | 0.1442 | 0.0286 | 0.0030 | 0.0000
50 | 0.2850 | 0.1452 | 0.0284 | 0.0042 | 0.0000
100 | 0.3082 | 0.1522 | 0.0332 | 0.0032 | 0.0000
150 | 0.3006 | 0.1486 | 0.0280 | 0.0032 | 0.0000
200 | 0.2982 | 0.1534 | 0.0272 | 0.0028 | 0.0000
500 | 0.3108 | 0.1556 | 0.0328 | 0.0042 ;| 0.0000
1000 | 0.3084 { 0.1568 | 0.0314 | 0.0028 | 0.0000

The estimated type II errors B(k)’s are all zero when k > 0.

427
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TABLE (III-1) Three stage sampling for the mean of N(0,1)
a = 0.05, m =15, v = 0.5, number of simulations = 5000

d n’ N S.E.(N) { Avg(®) | S.E.(%) P
1.7531 5| 15.0000 | 0.0000 | —0.0020 | 0.2607 | 1.0000
11.2396 10 | 15.3020 | 0.0160 0.0020 | 0.2587 | 1.0000
1.0121 15 | 17.4530 | 0.0530 0.0048 | 0.2424 | 1.0000
0.8765 20 | 20.8410 | 0.0830 | —0.0022 | 0.2244 | 0.9996
0.7157 30 | 29.1100 | 0.1260 | —0.0049 | 0.1900 | 0.9996
0.5544 50 | 46.3890 | 0.2010 | —0.0003 | 0.1558 | 0.9988
0.3920 | 100 | 95.5150 | 0.3130 | —0.0021 | 0.1068 | 0.9992
0.3201 | 150 | 145.5490 | 0.3840 0.0004 | 0.0838 | 0.9998
0.2772 | 200 | 196.0420 | 0.4410 0.0009 | 0.0737 | 0.9998
0.1753 | 500 | 495.9750 | 0.6910 0.0000 | 0.0451 | 0.9996
0.1240 | 1000 | 996.7490 | 0.9950 0.0003 | 0.0315 | 1.0000

TABLE (II1-2) Simulated values of 8 (type II error) for different values of k

Downward Shift k

n* 0.1 0.05 0.01 0.001 0
5 | 0.4902 | 0.2572 | 0.0508 | 0.0046 | 0.0000
10 | 0.3604 | 0.1848 | 0.0372 | 0.0030 | 0.0000
15 | 0.3200 | 0.1598 | 0.0328 | 0.0032 | 0.0000
20 | 0.3090 | 0.1642 | 0.0332 | 0.0024 | 0.0000
30 | 0.3030 | 0.1528 | 0.0288 | 0.0030 | 0.0000
50 | 0.2770 | 0.1412 | 0.0306 | 0.0026 | 0.0000
100 | 0.3044 | 0.1512 | 0.0274 | 0.0030 | 0.0000
150 | 0.3048 | 0.1508 ! 0.0304 | 0.0044 | 0.0000
200 | 0.2848 | 0.1474 | 0.0300 | 0.0030 | 0.0000
500 | 0.3034 | 0.1568 | 0.0308 | 0.0026 | 0.0000
1000 | 0.3068 | 0.1612 | 0.0360 | 0.0032 | 0.0000

NOTE : The estimated type II errors 8(k)’s are all zero when k > 0.

Almahmeed, M. A. and Hamdy, H. I. (1990). “Sequential estimation of linear
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