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Abstract

In this paper, we propose hierarchical cluster analysis and multidimensional scaling for joint distribution
valued data. Information technology is increasing the necessity of statistical methods for large and complex
data. Symbolic Data Analysis (SDA) is an attractive framework for the data. In SDA, target objects are typically
represented by aggregated data. Most methods on SDA deal with objects represented as intervals and histograms.
However, those methods cannot consider information among variables including correlation. In addition, objects
represented as a joint distribution can contain information among variables. Therefore, we focus on methods for
joint distribution valued data. We expanded the two well-known exploratory methods using the dissimilarities
adopted Hall Type relative projection index among joint distribution valued data. We show a simulation study
and an actual example of proposed methods.

Keywords: Symbolic Data Analysis (SDA), cluster analysis, multidimensional scaling, projection
index, kernel density estimation

1. Introduction

These days, the development of information technology enables us to collect and store data easily
and has subsequently resulted in large and complex data. A conventional analytic framework is not
effective when analyzing these kinds of data.

Symbolic Data Analysis (SDA) is one of the attractive frameworks to analyze large and complex
data. SDA was proposed by Diday in 1980’s. Many methods have been extended in the framework
of SDA (Billard and Diday, 2006; Bock and Diday, 2000; Diday and Noirhomme-Fraiture, 2008). In
SDA, target objects are typically represented by aggregated data. Those are called symbolic objects;
consequently, how to represent them is important to keep information in the original data. Most meth-
ods on SDA analyze objects represented as intervals or histograms. However, objects represented as
intervals do not contain information of distributions because they focus on only a pair of minimum and
maximum values. In the case of objects represented as histograms, they can contain information of
one dimensional distributions, but they lose information among variables including correlation. In ad-
dition, objects represented as a joint distribution can contain information among variables. When we
analyze data in detail, methods for objects represented as a joint distribution are effective. However,
there are few methods for them on SDA.

Therefore, we propose methods for objects represented as a joint distribution. Especially, we focus
on two well-known statistical methods, hierarchical cluster analysis and multidimensional scaling. In
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these two methods, how to define dissimilarities is a common problem to grasp the characteristic
structure of joint distributions. We adopt Hall Type relative projection index as dissimilarities among
joint distributions to the problem. The index is used for an extension of projection pursuit which is
one of the methods of dimension reduction.

This paper is organized as follows. We introduced the background and the outline of this study
in this section. In section 2, we explain basic concept and the terms of SDA and introduce preceding
studies. In section 3, we provide details of the proposed approaches. Section 4 is about simulation
study. We show the effectiveness of the proposed methods by comparing them with existing methods.
We also apply the proposed methods to telemonitoring data on Parkinson’s disease patients as an
actual example in section 5. Section 6 provides a conclusion.

2. Symbolic Data Analysis

In this section, we explain the basic concept and terms of SDA, and preceding studies of cluster
analysis and multidimensional scaling on SDA.

2.1. Target objects

In conventional analysis, the object is described with a single value or a vector. Therefore, when
multiple observation values are provided to each variable for objects, we would lose most information
because we aggregate them into a summarized value like an average. In SDA, objects on conventional
analysis are called individuals, and we analyze what individuals are aggregated. They are called
concepts. Concepts are typically described with intervals, histograms and distributions. We especially
focus on multidimensional distributions i.e., joint distributions. We call them joint distribution valued
data.

2.2. Preceding studies

A lot of methods in terms of cluster analysis on SDA were proposed such as Gowda and Diday (1991)
and Chavent and Lechevallier (2002). For cluster analysis which represents objects as distributions,
Katayama et al. (2009) proposed hierarchical cluster analysis using Symmetric Kullback-Leibler di-
vergence as dissimilarities. In addition, Terada and Yadohisa (2010) proposed non-hierarchical cluster
analysis using cumulative distribution function as dissimilarities. These methods realize cluster anal-
ysis in consideration of information among variables and distributions of the original data. However,
the method by Katayama et al. (2009) has a limitation to the available case because it assumes that
target distributions are normal distributions. The method by Terada and Yadohisa (2010) must keep
all probabilities of intervals because it uses cumulative distribution functions. Therefore, there is a
problem that computational complexity becomes enormous in higher dimensions.

Multidimensional scaling on SDA are proposed by Groenen et al. (2006). The dissimilarities of
the method are represented as interval valued data. Mizuta and Minami (2012) proposed multidimen-
sional scaling in which dissimilarities are distributions. However, there are few methods in terms of
multidimensional scaling in which target objects are represented as multidimensional distributions.

3. Proposed Method

In this section, we give notations and explain how to calculate the dissimilarities among joint distri-
butions. We also show methods for hierarchical cluster analysis and multidimensional scaling using
dissimilarities.
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3.1. Notations

We assume that there are m concepts and i” concept consists of n; X p matrix X;. n; is the number of
individuals included in i concept. Each individual is described as p variables. We denote m concepts
as X.

Xi1,1 Xi12 0 Xilp
Xi2,1 Xi22 ot Xi2p

X, =| T T (3.1)
xi,ni,l xi,n;,2 e xi,lli,p
Xy
X,

x=| .| (3.2)
X

The i”* symbolic object is built by aggregating n; individuals. We represent i symbolic object
&:(z) as the density function on p variables. We approximate &(z) as a joint distribution in the form
of a density function from X;. Then, we estimate the probability density function by kernel density
estimation.

3.2. Dissimilarities

It is important to define a dissimilarity among joint distributions. In the study, we adopt Hall Type
relative projection index which is used for relative projection pursuit (Hiro ef al., 2004). Projection
pursuit is a method for dimension reduction to search for low dimensional space where we found
an interesting structure. The original projection pursuit assumes that the normal distribution is the
most uninteresting structure. If projected data have the structure which is most different from normal
distribution, we regard it as the most interesting structure. Projection pursuit uses projection index to
measure the distance between distributions. There are some indices including Hall index, area index
and moment index. We focus on Hall index. Hall index defines dissimilarities with the difference of
density functions. One dimensional Hall index is defined as

J= f (o) — B0 dut (33)

00

fo(u) is a probability density function of the samples projected in one dimensional space by projection
vector . ¢(-) is the probability density function of the standard normal distribution.

Projection pursuit was extended to use the standard normal distribution as well as any distribu-
tions. The method is called relative projection pursuit. Hiro ef al. (2004) proposed a Hall Type
relative projection index that provides dissimilarities between a distribution of object’s samples and a
distribution of referred samples;

I(@) = f {folu) = go(u)y du

= f ” fou)du + f ) 8o(u)du -2 f ) fo)go(W)du, (3.4)

where f,(u) is a density function of object’s samples and g, (u) is that of referred samples. They are
projected in one dimensional space by projection vector a.
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We use Hall Type relative projection index to calculate dissimilarities among distribution valued
data. fi(z) represents a density function of i joint distribution valued data which have p variables,
where z = (21,22, .. .,2,). In the same way, fj(z) represents a density function of j’h joint distribution
valued data. The dissimilarity s;; is represented as

o0 00 2
Sij = f f (@ - fi@) dz
= f f fix)dz + f f fi(z)*dz -2 f f Ji@)fj(@)dz. (3.5)

We adopt kernel density estimation using normal distribution as kernel function. The distribution
valued data is represented as

nj P
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where h; 1, h;5,. .., h;, are optimal band widths of the density function f;(z) by Scott (1992) repre-
sented as
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where o, is the standard deviation of the " variable of whole object’s samples.
Using the estimated density function, we transform the items;
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Then, the dissimilarity s;; is represented as
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3.3. Cluster analysis for joint distribution valued data

Cluster analysis classifies objects into some groups. The method merges similar object sequentially.
The algorithm of the proposed hierarchical cluster analysis for joint distribution valued data is as
follows.

Step 1: As initial state, regard m symbolic objects as m clusters.

Step 2: Calculate dissimilarities using the expression (3.8).

Step 3: Merge the most similar two objects as one new cluster.

Step 4: Calculate dissimilarities among the new cluster generated by Step 3 and the others.
Step 5: Repeat Step 3 and Step 4 until the number of clusters is one.

Here, we explain the analysis procedure. First, we build symbolic objects. Next, we generate
clusters using the above algorithm. Then, we decide how to generate new clusters such as single
linkage method, complete linkage method and Ward method (Haltigan, 1975). Hereafter, we adopt
the Ward method. Then, we visualize the result by a dendrogram. Finally, we interpret the result.

3.4. Multidimensional scaling for joint distribution valued data

Multidimensional scaling is to visualize relationships among objects by configurations in low dimen-
sional space. It is based on dissimilarities. In the proposed method, we use dissimilarity matrix
S = {s;;} as input data of Torgerson’s method (Torgerson, 1958). The analysis procedure is as follows.
First, we build symbolic objects and calculate dissimilarities matrix using the expression (3.8). Next,
we apply Torgerson’s method to dissimilarities matrix S. Torgerson’s method is based on the theorem
of Young-Householder. We transform the dissimilarities matrix for the non-negative matrix B = {b;;},

1
b= =3 (5- -5+ ). (39

where

FIER S NS o N L o) oY
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We apply eigenvalue decomposition to B. After that, we construct configurations using relatively
large eigenvalues and eigenvectors. Finally, we visualize the result by configurations in low dimen-
sional space and interpret it.

4. Simulation Study

We adopt the proposed methods to artificial dataset generated by copulas. Copula is a function which
indicates the relationship of marginal distribution functions. In addition, we compare the results to
those by three existing approaches.

We use two types of copulas, Gumbel copula and Clayton copula (Nelsen, 1999), with various
parameter values. When 6 indicates a parameter, Gumbel copula is represented as

Cu,v) = exp (— (=10’ +(=In v)"]%) (1<0).
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Table 1: Copulas in the simulation
Concept Copula Parameter 6 Kendall’s 7
1-5 Gumbel copula 2.5 0.6
6-10 Gumbel copula 5.0 0.8
11-15 Clayton copula 3.0 0.6
16 - 20 Clayton copula 8.0 0.8
gumbel copula (6 = 2.5) gumbel copula (6 = 5)
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Figure 1: Examples of copulas.

Clayton copula is represented as

Cluv) = [max (u™ + v = 1,0)]

1
* (-1<0<0 or 0<6).

Table 1 shows details of the copulas. There are four kinds of copula and each copula generates
five concepts. Thus, there are 20 concepts in total. Each concept consists of 500 individuals. We
adjust the parameters so that the values of their Kendall’s 7 are same. Figure 1 shows the examples of
the copulas in the simulation.
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We introduce three existing methods. The 1* method is interval based approach (Chavent and
Lechevallier, 2002). The 2"¢ method is histogram based approach (Diday and Noirhomme-Fraiture,
2008). The last method is distribution based approach (Katayama et al., 2010). The dissimilarities on
these methods are important to compare with the proposed methods.

Chavent and Lechevallier (2002) uses Hausdorff distance as dissimilarities for interval valued
data. When i concept is represented as the interval [ming, max; ] (k = 1,..., p), Hausdorff distance
between concept i and j is represented as

sij = Z max Hminik - minjk| s |maxik - maxij . 4.1
k=1
L, distance is adopted as dissimilarities for histogram valued data (Diday and Noithomme-Fraiture,
2008). When i concept is represented as (Gix.1,Gik2s--->Gikn); K = 1,..., p where Zf’il Gir: = 1,
by is the number of bins in the histogram for k" variable. L, distance between concept i and j is
represented as

by

p
ZZ %kz—q]kz . 4.2)

k=1 I=1

Katayama et al. (2010) uses symmetric Kullback-Leibler divergence as dissimilarities for distribu-
tion valued data. When i normal distribution is represented as N(y;, Z;), symmetric Kullback-Leibler
divergence between concept i and j is represented as

Sij = tr (ZiZj_l) + tr (ijl‘_l) +tr ((Zi_l + Ej_l)([ll' —[lj)( i —[.lj)T) - 2p (43)

Figures 2 and 3 are the results of interval based approach, and 4 and 5 are a histogram based
approach. The figures show that these existing approaches do not provide clusters based on kinds of
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copulas. Figures 6 and 7 are a distribution based approach. Objects are classified into two clusters
based on correlation; however, this approach does not properly grasp the structure of copulas.

Figure 8 is the result of the proposed hierarchical cluster analysis. Symbolic objects are classified

into four clusters by dividing at a height of 0.1. Figure 8 shows that the proposed method can grasp
the structure of different correlation and copulas. Figure 9 is the result of multidimensional scaling.
The vertical axis shows the differences of copulas. The horizontal axis shows those of correlation. We
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Table 2: Details of variables

Variable Description
i MDVP: Jitter(abs) KP-MDVP absolute jitter in microseconds
2 MDVP: Shimmer KP-MDVP local shimmer
3 NHR Noise-to-Harmonics ratio
Va HNR Harmonics-to-Noise ratio
¥s DFA Detrended fluctuation analysis
Y6 PPE Pitch period entropy

can also grasp the relationships among variables using the proposed multidimensional scaling.

5. Application

In this section, we show an actual example of the proposed methods. We introduce the dataset at
first; subsequently, we explain an application of the proposed methods for the dataset and interpret the
results.

5.1. Dataset

We use telemonitoring data on Parkinson’s disease patients. The dataset is open to the public in
a Web site called UCI Machine Learning Repository. This is about voice measure in terms of the
noise in patient’s phonation (Tsanas et al., 2010). It consists of 5,875 individuals and 20 variables,
including patient’s ID, sex, age and voice measures. They also contain the two evaluations diagnosed
by a doctor, called UPDRS. We focus on six voice measures (Table 5.1). In the dataset, there are 42
patients (male 28, female 14) in the initial stage of Parkinson’s disease. They have collected their own
phonation by telemonitoring system called Intel AHTD for six months. Tsanas et al. (2010) tried to
predict UPDRS values by regression methods using variables on voice measures.
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5.2. How to build symbolic objects

We explain how to build symbolic objects to apply the proposed methods to the dataset. We regard
each patient as a concept. Then, the individual is each measurement. We build joint distribution
valued data by aggregated six voice measures. We excluded the 36 patient from the dataset because
she had too large of value and was regarded as an outlier.

Jitter (y;) and Shimmer (y,) are parameters to evaluate periodic disorder of the vocal-fold vibra-
tion. lJitter quantifies the fluctuation of the periodicity in every basic period. Similarly, Shimmer
quantifies a fluctuation of the amplitude. NHR (y3) and HNR (y4) measure the power ratio of harmon-
ics wave ingredient and noise wave ingredient from the dividing sound wave. DFA (ys) measures the
extent of turbulent noise in the speech signal, quantifying the stochastic self-similarity of the noise
caused by turbulent airflow in the vocal tract (Little ez al., 2007). Incomplete vocal-fold closure causes
arise of DFA. PPE (y¢) measures the impaired control of stable pitch during sustained phonation (Lit-
tle et al., 2009). PPE is robust to confounding factors, such as smooth vibrate, which is present in
healthy voices as well as dysphonia voices. Thus, this measure contributes significant information
separating healthy control and Parkinson’s disease patients (Tsanas et al., 2010).

5.3. Results

Figure 10 shows the result of the proposed hierarchical clustering method. Patients are classified into
three clusters by dividing at height of 4.0e+07. We assume that cluster 1, cluster 2 and cluster 3
sequentially from the left.

Figure 11 shows the configuration of the result of the proposed multidimensional scaling. We
consider that the configuration in the two dimensional space contain significant information because
the cumulative contribution ratio of first and second eigenvalues is over 90%. Figure 11 also shows
the structure of three clusters with Figure 10. In the figure, the patient number is plotted with the
respective cluster’s color (cluster 1: red, cluster 2: blue, cluster 3: green).

We interpret the results. Figure 12 is a matrix of scatterplot of all individuals. DFA values of
cluster 1 are high. This means that phonation of the patients in cluster 1 shows a self-similarity of the
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Table 3: Interpretation of clusters
Cluster Interpretation
1 Patients who have self-similarity of the noise in their phonation.
2 Patients who have large amount of the noise in their phonation.
3 Patients who have relatively few symptoms of Parkinson’s disease.

noise. However, DFA values and HNR values of cluster 2 are low. This means that phonation of the
patients in cluster 2 does not show self-similarity of the noise. But, much noise is contained in their
phonation. Most values of the variables in cluster 3 are relatively low except HNR.

Now, we summarize the interpretation in Table 5.2. The configuration has two directions which
show voice features. One shows the degree of self-similarity of the noise in their phonation, the other
shows the amount of the noise.

6. Concluding Remarks

In this paper, we proposed hierarchical cluster analysis and multidimensional scaling for joint distri-
bution valued data in the framework of SDA. We can keep information among variables including
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correlation by representing objects as joint distribution valued data. In addition, we expanded existing
methods using the dissimilarities adopted Hall Type relative projection index among joint distribution
valued data. We investigated the effectiveness of the proposed methods by simulation study using
copulas. We compared the proposed methods and existing approaches; in addition, we also applied
the proposed methods to telemonitoring data on Parkinson’s disease patients. We confirmed that the
clusters and the configuration grasped the voice characteristics of Parkinson’s disease patients.
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