• Title/Summary/Keyword: Statistical learning model

Search Result 541, Processing Time 0.025 seconds

ESTABLISHMENT OF A NEURAL NETWORK MODEL FOR DETECTING A PARTIAL FLOW BLOCKAGE IN AN ASSEMBLY OF A LIQUID METAL REACTOR

  • Seong, Seung-Hwan;Jeong, Hae-Yong;Hur, Seop;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • A partial flow blockage in an assembly of a liquid metal reactor could result in a cooling deficiency of the core. To develop a partial blockage detection system, we have studied the changes of the temperature fluctuation characteristics in the upper plenum according to changes of the t10w blockage conditions in an assembly. We analyzed the temperature fluctuation in the upper plenum with the Large Eddy Simulation (LES) turbulence model in the CFX code and evaluated its statistical parameters. Based on the results of the statistical analyses, we developed a neural network model for detecting a partial flow blockage in an assembly. The neural network model can retrieve the size and the location of a flow blockage in an assembly from a change of the root mean square, the standard deviation, and the skewness in the temperature fluctuation data. The neural network model was found to be a possible alternative by which to identify a flow blockage in an assembly of a liquid metal reactor through learning and validating various flow blockage conditions.

The Causal Linkage Between Perceived E-Learning Usefulness and Student Learning Performance: An Empirical Study from Vietnam

  • HUYNH, Quang Linh
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.5
    • /
    • pp.455-463
    • /
    • 2022
  • The current study adds to the body of knowledge about the mediation in the causal link between students' perceptions of the utility of eLearning and their learning performance. The data was collected from 500 questionnaires that were delivered to the students at the Vietnam National University of Ho Chi Minh City. Only 422 finished questionnaires were usable for analyses, indicating a responding rate of 84.4%. Multiple regressions were used to investigate causal correlations, whereas Goodman's (1960) techniques were used to investigate mediating relationships. The major findings reveal that both the utility and adoption of eLearning have an impact on students' learning performance, with usefulness being a crucial determinant of eLearning adoption for study. More meaningfully, statistical evidence on the mediation of adopting eLearning for study in the causal linkage from the usefulness of eLearning perceived by students to their learning performance was provided. The relevance of using eLearning for study is stressed in this study, where it is not only one of the key antecedents of their learning performance, but also acts as a mediator between the usefulness of eLearning and learning performance in the research model.

Adaptive Anomaly Movement Detection Approach Based On Access Log Analysis (접근 기록 분석 기반 적응형 이상 이동 탐지 방법론)

  • Kim, Nam-eui;Shin, Dong-cheon
    • Convergence Security Journal
    • /
    • v.18 no.5_1
    • /
    • pp.45-51
    • /
    • 2018
  • As data utilization and importance becomes important, data-related accidents and damages are gradually increasing. Especially, insider threats are the most harmful threats. And these insider threats are difficult to detect by traditional security systems, so rule-based abnormal behavior detection method has been widely used. However, it has a lack of adapting flexibly to changes in new attacks and new environments. Therefore, in this paper, we propose an adaptive anomaly movement detection framework based on a statistical Markov model to detect insider threats in advance. This is designed to minimize false positive rate and false negative rate by adopting environment factors that directly influence the behavior, and learning data based on statistical Markov model. In the experimentation, the framework shows good performance with a high F2-score of 0.92 and suspicious behavior detection, which seen as a normal behavior usually. It is also extendable to detect various types of suspicious activities by applying multiple modeling algorithms based on statistical learning and environment factors.

  • PDF

Estimation of software project effort with genetic algorithm and support vector regression (유전 알고리즘 기반의 서포트 벡터 회귀를 이용한 소프트웨어 비용산정)

  • Kwon, Ki-Tae;Park, Soo-Kwon
    • The KIPS Transactions:PartD
    • /
    • v.16D no.5
    • /
    • pp.729-736
    • /
    • 2009
  • The accurate estimation of software development cost is important to a successful development in software engineering. Until recent days, the model using regression analysis based on statistical algorithm and machine learning method have been used. However, this paper estimates the software cost using support vector regression, a sort of machine learning technique. Also, it finds the best set of optimized parameters applying genetic algorithm. The proposed GA-SVR model outperform some recent results reported in the literature.

Severity Prediction of Sleep Respiratory Disease Based on Statistical Analysis Using Machine Learning (머신러닝을 활용한 통계 분석 기반의 수면 호흡 장애 중증도 예측)

  • Jun-Su Kim;Byung-Jae Choi
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.59-65
    • /
    • 2023
  • Currently, polysomnography is essential to diagnose sleep-related breathing disorders. However, there are several disadvantages to polysomnography, such as the requirement for multiple sensors and a long reading time. In this paper, we propose a system for predicting the severity of sleep-related breathing disorders at home utilizing measurable elements in a wearable device. To predict severity, the variables were refined through a three-step variable selection process, and the refined variables were used as inputs into three machine-learning models. As a result of the study, random forest models showed excellent prediction performance throughout. The best performance of the model in terms of F1 scores for the three threshold criteria of 5, 15, and 30 classified as the AHI index was about 87.3%, 90.7%, and 90.8%, respectively, and the maximum performance of the model for the three threshold criteria classified as the RDI index was approx 79.8%, 90.2%, and 90.1%, respectively.

Vehicle Classification by Road Lane Detection and Model Fitting Using a Surveillance Camera

  • Shin, Wook-Sun;Song, Doo-Heon;Lee, Chang-Hun
    • Journal of Information Processing Systems
    • /
    • v.2 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • One of the important functions of an Intelligent Transportation System (ITS) is to classify vehicle types using a vision system. We propose a method using machine-learning algorithms for this classification problem with 3-D object model fitting. It is also necessary to detect road lanes from a fixed traffic surveillance camera in preparation for model fitting. We apply a background mask and line analysis algorithm based on statistical measures to Hough Transform (HT) in order to remove noise and false positive road lanes. The results show that this method is quite efficient in terms of quality.

Analysis Model Evaluation based on IoT Data and Machine Learning Algorithm for Prediction of Acer Mono Sap Liquid Water

  • Lee, Han Sung;Jung, Se Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.10
    • /
    • pp.1286-1295
    • /
    • 2020
  • It has been increasingly difficult to predict the amounts of Acer mono sap to be collected due to droughts and cold waves caused by recent climate changes with few studies conducted on the prediction of its collection volume. This study thus set out to propose a Big Data prediction system based on meteorological information for the collection of Acer mono sap. The proposed system would analyze collected data and provide managers with a statistical chart of prediction values regarding climate factors to affect the amounts of Acer mono sap to be collected, thus enabling efficient work. It was designed based on Hadoop for data collection, treatment and analysis. The study also analyzed and proposed an optimal prediction model for climate conditions to influence the volume of Acer mono sap to be collected by applying a multiple regression analysis model based on Hadoop and Mahout.

Neural Network and Its Application to Rainfall-Runoff Forecasting

  • Kang, Kwan-Won;Park, Chan-Young;Kim, Ju-Hwan
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.1-9
    • /
    • 1993
  • It is a major objective for the management and operation of water resources system to forecast streamflows. The applicability of artificial neural network model to hydrologic system is analyzed and the performance is compared by statistical method with observed. Multi-layered perception was used to model rainfall-runoff process at Pyung Chang River Basin in Korea. The neural network model has the function of learning the process which can be trained with the error backpropagation (EBP) algorithm in two phases; (1) learning phase permits to find the best parameters(weight matrix) between input and output. (2) adaptive phase use the EBP algorithm in order to learn from the provided data. The generalization results have been obtained on forecasting the daily and hourly streamflows by assuming them with the structure of ARMA model. The results show validities in applying to hydrologic forecasting system.

  • PDF

Data-Driven Batch Processing for Parameter Calibration of a Sensor System (센서 시스템의 매개변수 교정을 위한 데이터 기반 일괄 처리 방법)

  • Kyuman Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.475-480
    • /
    • 2023
  • When modeling a sensor system mathematically, we assume that the sensor noise is Gaussian and white to simplify the model. If this assumption fails, the performance of the sensor model-based controller or estimator degrades due to incorrect modeling. In practice, non-Gaussian or non-white noise sources often arise in many digital sensor systems. Additionally, the noise parameters of the sensor model are not known in advance without additional noise statistical information. Moreover, disturbances or high nonlinearities often cause unknown sensor modeling errors. To estimate the uncertain noise and model parameters of a sensor system, this paper proposes an iterative batch calibration method using data-driven machine learning. Our simulation results validate the calibration performance of the proposed approach.

The Effects of ARCS Model Based Instruction and Cognitive Style on Learning Motivation and Learning Achievement in Computer Education (전산수업에서 ARCS 모형이 인지양식에 따라 학습동기와 학업성취도에 미치는 영향)

  • Kim, Sung-Wan;Yoon, Joung-Sung
    • The Journal of Korean Association of Computer Education
    • /
    • v.9 no.5
    • /
    • pp.1-11
    • /
    • 2006
  • This study aims at identifying what effect ARCS model based instruction and cognitive style have on learning motivation and achievement in computer education. In order to accomplish this goal. 70 high school students were randomly allocated into the experiment group and the control group. And each group was divided into field-independent group and field-dependent group. The results were as follows. First, post test of learning motivation among four groups showed that mean differences were statistical significant. Especially 'ARCS model based instruction-field independent group got higher score than 'traditional instruction field dependent' group. Second, post test of learning achievement showed no significant mean difference among four group. The result of the pre and post test difference analysis showed that the change scores of means were significantly different.

  • PDF