• Title/Summary/Keyword: Statistical En-route Method

Search Result 11, Processing Time 0.027 seconds

The Secure Path Cycle Selection Method for Improving Energy Efficiency in Statistical En-route Filtering Based WSNs (무선 센서 네트워크에서 통계적 여과 기법의 에너지 효율을 향상시키기 위한 보안 경로 주기 선택 기법)

  • Nam, Su-Man;Sun, Chung-Il;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.31-40
    • /
    • 2011
  • Sensor nodes are easily exposed to malicious attackers by physical attacks. The attacker can generate various attacks using compromised nodes in a sensor network. The false report generating application layers injects the network by the compromised node. If a base station has the injected false report, a false alarm also occurs and unnecessary energy of the node is used. In order to defend the attack, a statistical en-route filtering method is proposed to filter the false report that goes to the base station as soon as possible. A path renewal method, which improves the method, is proposed to maintain a detection ability of the statistical en-route filtering method and to consume balanced energy of the node. In this paper, we proposed the secure path cycle method to consume effective energy for a path renewal. To select the secure path cycle, the base station determines through hop counts and the quantity of report transmission by an evaluation function. In addition, three methods, which are statistical en-route filter, path selection method, and path renewal method, are evaluated with our proposed method for efficient energy use. Therefore, the proposed method keeps the secure path and makes the efficiency of energy consumption high.

Static Filtering Probability Control Method Based on Reliability of Cluster in Sensor Networks (센서 네트워크에서 클러스터 신뢰도 기반 정적 여과 확률 조절 기법)

  • Hur, Suh-Mahn;Seo, Hee-Suk;Lee, Dong-Young;Kim, Tae-Kyung
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.161-171
    • /
    • 2010
  • Sensor Networks are often deployed in unattended environments, thus leaving these networks vulnerable to false data injection attacks in which an adversary injects forged reports into the network through compromised nodes. Such attacks by compromised sensors can cause not only false alarms but also the depletion of the finite amount of energy in a battery powered network. Ye et al. proposed the Statistical En-route Filtering scheme to overcome this threat. In statistical en-route filtering scheme, all the intermediate nodes perform verification as event reports created by center of stimulus node are forwarded to the base station. This paper applies a probabilistic verification method to the Static Statistical En-route Filtering for energy efficiency. It is expected that the farther from the base station an event source is, the higher energy efficiency is achieved.

An Adaptive Threshold Determining Method in Senor Networks using Fuzzy Logic (통계적 여과기법에서 퍼지 규칙을 이용한 적응적 보안 경계 값 결정 방법)

  • Sun, Chung-Il;Cho, Tae-Ho
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.177-180
    • /
    • 2008
  • There are many application areas of sensor networks, such as surveillance, hospital monitoring, and home network. These are dependent on the secure operation of networks, and will have serious outcome if the networks is injured. An adversary can inject false data into the network through the compromising node. Ye et al. proposed a statistical en-route filtering scheme (SEF) to detect such false data during forwarding process. In this scheme, it is important that the choice of the threshold value since it trades off security and overhead. This paper presents an adaptive threshold value determining method in the SEF using fuzzy logic. The fuzzy logic determines a security distance value by considering the situation of the network. The Sensor network is divided into several areas by the security distance value, it can each area to uses the different threshold value. The fuzzy based threshold value can reduce the energy consumption in transmitting.

  • PDF

A Method to Improve Energy Efficiency Using a Function that Evaluate the Probability of Attempts to Verify a Report at Intermediate Node in USN (USN에서 중간 노드에서의 보고서 검증 시도 확률 평가 함수를 이용한 에너지 효율 향상 기법)

  • Lee, Hyun-Woo;Moon, Soo-Young;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.21-29
    • /
    • 2011
  • Wireless sensor nodes operate in open environments. The deployed sensor nodes are very vulnerable to physical attacks from outside. Attackers compromise some sensor nodes. The compromised nodes by attackers can lead to false data injection into sensor networks. These attacks deplete the limited energy of sensor nodes. Ye et al. proposed the Statistical En-Route Filtering (SEF) as a countermeasure of the attacks. The sensor node in SEF examines the event reports based on certain uniform probability. Thus, the same energies are consumed in both legitimate reports and false reports. In this paper, we propose a method that each node controls the probability of attempts to verify a report to reduce energy consumption of sensor nodes. The probability is determined in consideration of the remaining energy of the node, the number of hops from the node to SINK node, the ratio of false reports. the proposed method can have security which is similar with SEF and consumes lower energy than SEF.

A Fuzzy Logic-Based False Report Detection Method in Wireless Sensor Networks (무선 센서 네트워크에서 퍼지 로직 기반의 허위 보고서 탐지 기법)

  • Kim, Mun-Su;Lee, Hae-Young;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.3
    • /
    • pp.27-34
    • /
    • 2008
  • Wireless sensor networks are comprised of sensor nodes with resource-constrained hardware. Nodes in the sensor network without adequate protection may be compromised by adversaries. Such compromised nodes are vulnerable to the attacks like false reports injection attacks and false data injection attacks on legitimate reports. In false report injection attacks, an adversary injects false report into the network with the goal of deceiving the sink or the depletion of the finite amount of energy in a battery powered network. In false data injection attacks on legitimate reports, the attacker may inject a false data for every legitimate report. To address such attacks, the probabilistic voting-based filtering scheme (PVFS) has been proposed by Li and Wu. However, each cluster head in PVFS needs additional transmission device. Therefore, this paper proposes a fuzzy logic-based false report detection method (FRD) to mitigate the threat of these attacks. FRD employs the statistical en-route filtering scheme as a basis and improves upon it. We demonstrate that FRD is efficient with respect to the security it provides, and allows a tradeoff between security and energy consumption, as shown in the simulation.

  • PDF

A Path Selection Method for Improving the Detection Power of Statistical En-route Filtering in Sensor Networks (센서 네트워크에서 통계적 여과 기법의 탐지능력 향상을 위한 경로 선택 기법)

  • Sun, Chung-Il;Kim, Sang-Ryul;Cho, Tae-Ho
    • KSCI Review
    • /
    • v.15 no.1
    • /
    • pp.31-35
    • /
    • 2007
  • 많은 센서 네트워크 응용 분야에서 센서 노드들은 무인 환경에서 배치되므로, 물리적인 공격들과 노드가 가진 암호 키들이 손상되기 쉬운 취약성을 가진다. 위조 보고서는 훼손된 노드를 통해서 잠입할 수 있고 이 위조보고서는 거짓 경보를 유발할 수 있을 뿐만 아니라, 네트워크의 제한된 에너지의 고갈을 야기한다. 이러한 문제점을 보안하기 위해 Ye 등은 통계적 여과 기법을 통해서 위조 보고서를 탐지하고 도중에 여과시키는 방안을 제시한다. 이 제안된 방안에서 각 노드는 검증을 위한 일정한 양의 정보를 가지며. 탐지 능력은 라우팅 경로의 선택에 의해 영향을 받는다. 본 논문에서는, 통계적 여과 기법의 위조 보고서 탐지 능력을 향상시키기 위한 경로선택 방법을 제안한다. 각 노드는 베이스 스테이션으로부터 정해지는 각 경로들의 위조 보고서 탐지 능력을 평가하고 위조 보고서 침투 공격에 대해 가장 안전한 경로를 선택한다.

  • PDF

An Adaptive Key Redistribution Method for Filtering-based Wireless Sensor Networks

  • Kim, Jin Myoung;Lee, Hae Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2518-2533
    • /
    • 2020
  • In wireless sensor networks, adversaries may physically capture sensor nodes on the fields, and use them to launch false positive attacks (FPAs). FPAs could be conducted by injecting forged or old sensing reports, which would represent non-existent events on the fields, with the goal of disorientating the base stations and/or reducing the limited energy resources of sensor nodes on the fields. Researchers have proposed various mitigation methods against FPAs, including the statistical en-route filtering scheme (SEF). Most of these methods are based on key pre-distribution schemes and can efficiently filter injected false reports out at relay nodes through the verification of in-transit reports using the pre-distributed keys. However, their filtering power may decrease as time goes by since adversaries would attempt to capture additional nodes as many as possible. In this paper, we propose an adaptive key distribution method that could maintain the security power of SEF in WSNs under such circumstances. The proposed method makes, if necessary, BS update or re-distribute keys, which are used to endorse and verify reports, with the consideration of the filtering power and energy efficiency. Our experimental results show that the proposed method is more effective, compared to SEF, against FPAs in terms of security level and energy saving.

Adaptive Partitioning of the Global Key Pool Method using Fuzzy Logic for Resilience in Statistical En-Route Filtering (통계적 여과기법에서 훼손 허용도를 위한 퍼지 로직을 사용한 적응형 전역 키 풀 분할 기법)

  • Kim, Sang-Ryul;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.4
    • /
    • pp.57-65
    • /
    • 2007
  • In many sensor network applications, sensor nodes are deployed in open environments, and hence are vulnerable to physical attacks, potentially compromising the node's cryptographic keys. False sensing report can be injected through compromised nodes, which can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. Fan Ye et al. proposed that statistical en-route filtering scheme(SEF) can do verify the false report during the forwarding process. In this scheme, the choice of a partition value represents a trade off between resilience and energy where the partition value is the total number of partitions which global key pool is divided. If every partition are compromised by an adversary, SEF disables the filtering capability. Also, when an adversary has compromised a very small portion of keys in every partition, the remaining uncompromised keys which take a large portion of the total cannot be used to filter false reports. We propose a fuzzy-based adaptive partitioning method in which a global key pool is adaptively divided into multiple partitions by a fuzzy rule-based system. The fuzzy logic determines a partition value by considering the number of compromised partitions, the energy and density of all nodes. The fuzzy based partition value can conserve energy, while it provides sufficient resilience.

  • PDF

Regional Path Re-selection Period Determination Method for the Energy Efficient Network Management in Sensor Networks applied SEF (통계적 여과 기법이 적용된 센서 네트워크에서 에너지 효율적인 네트워크 관리를 위한 영역별 경로 재설정 주기 결정 기법)

  • Park, Hyuk;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.3
    • /
    • pp.69-78
    • /
    • 2011
  • A large-scale sensor network usually operates in open and unattended environments, hence individual sensor node is vulnerable to various attacks. Therefore, malicious attackers can physically capture sensor nodes and inject false reports into the network easily through compromised nodes. These false reports are forwarded to the base station. The false report injection attack causes not only false alarms, but also the depletion of the restricted energy resources in a battery powered network. The statistical en-route filtering (SEF) mechanism was proposed to detect and drop false reports en route. In SEF, the choice of routing paths largely affect the energy consumption rate and the detecting power of the false report. To sustain the secure routing path, when and how to execute the path re-selection is greatly need by reason of the frequent network topology change and the nodes's limitations. In this paper, the regional path re-selection period determination method is proposed for efficient usage of the limited energy resource. A fuzzy logic system is exploited in order to dynamically determine the path re-selection period and compose the routing path. The simulation results show that up to 50% of the energy is saved by applying the proposed method.

The Study of Driving Fatigue using HRV Analysis (HRV 분석을 이용한 운전피로도에 관한 연구)

  • 성홍모;차동익;김선웅;박세진;김철중;윤영로
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The job of long distance driving is likely to be fatiguing and requires long period alertness and attention, which make considerable demands of the driver. Driving fatigue contributes to driver related with accidents and fatalities. In this study, we investigated the relationship between the number of hours of driving and driving fatigue using heart rate variability(HRV) signal. With a more traditional measure of overall variability (standard deviation, mean, spectral values of heart rate). Nonlinear characteristics of HRV signal were analyzed using Approximate Entropy (ApEn) and Poincare plot. Five subjects drive the four passenger vehicle twice. All experiment number was 40. The test route was about 300Km continuous long highway circuit and driving time was about 3 hours. During the driving, measures of electrocardiogram(ECG) were performed at intervals of 30min. HRV signal, derived from the ECG, was analyzed using time, frequency domain parameters and nonlinear characteristic. The significance of differences on the response to driving fatigue was determined by Student's t-test. Differences were considered significant when a p value < 0.05 was observed. In the results, mean heart rate(HRmean) decreased consistently with driving time, standard deviation of RR intervals(SDRR), standard deviation of the successive difference of the RR intervals(SDSD) increased until 90min. Hereafter, they were almost unchanging until the end of the test. Normalized low frequency component $(LF_{norm})$, ratio of low to high frequency component (LF/HF) increased. We used the Approximate Entropy(ApEn), Poincare plot method to describe the nonlinear characteristics of HRV signal. Nonlinear characteristics of HRV signals decreased with driving time. Statistical significant is appeared after 60 min in all parameters.