• Title/Summary/Keyword: Stationary emission source

Search Result 19, Processing Time 0.03 seconds

Characteristics of Source and Concentration of VOCs in Daegu (대구지역 대기 중 VOCs 농도 및 발생원 특성)

  • Gu Min-Jung;Choi Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.543-553
    • /
    • 2005
  • In recent days, photochemical smog due to the rapid industry development and vehicle increasement has become a critical pollutant in the metropolitan area and the number of ozone alarm signal has increased every year. This research was performed to evaluate VOCs emission source characteristics and concentration of VOCs in Daegu. The site average concentration was observed in the following order: industrial area > commercial area > residential area. Most of the VOCs species except toluene showed variations with higher concentration during nighttime, and lower concentration during the daytime. The major VOCs of stationary emission source were BTEX(benzene, toluene, ethylbenzene. xylene) and methylene chloride, trichloroethene and styrene. Also, those of automobile exhaust were toluene and benzene. Also, the major VOCs concentration emited by the vehicle fuel was observed in the following order: gasoline > light oil > liquefied petroleum gas (L.P.G). Correlation coefficients values were estimated between major VOCs such as toluene, ethylbenzene, m,p-xylene, o-xylene. Results showed that correlation coefficient values were significant magnitude above 0.76. Also, there showed highly significant correlations among ethyl benzene, m,p-xylene, and o-xylene concentration(Pearson correlation coefficients, r=0.868-0.982). Calculated correlation coefficients among commercial area,industrial area and residential area were 0.934-0.981, they showed high correlation. There showed highly correlation between stationary emission source and industrial area, compared with commercial area and residential area. Also, calculated correlation coefficients among commercial area, industrial area, residential area and automobile exhaust were 0.732, 0.725, 0.777, respectively.

Comparison of Measurement Methods and Size Fraction of Fine Particles (PM10, PM2.5) from Stationary Emission Source Using Korean Standard and ISO: Coal Power Plant and Refinery (국내공정시험기준과 ISO 방법을 이용한 고정오염원 미세먼지 (PM10, PM2.5) 측정 방법 및 입경분율 비교: 석탄화력발전소, 석유정제시설 중심으로)

  • Youn, Jong-Sang;Han, Sehyun;Jung, Yong-Won;Jeon, Ki-Joon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.342-350
    • /
    • 2017
  • We report mass concentration and size fraction of TPM, $PM_{10}$ and $PM_{2.5}$ according to Korea standard test method (ES 01301.1 and ES 01317.1) and ISO 23210 methods. Particulate matters were sampled in large stationary emission sources such as a coal power plant and B-C oil refinery. The Korea standard test method PM mass concentrations showed 3~3.5 times larger than the cascade impactor method. On the other hand, the size fraction results showed less than 5% difference (i.e. $PM_{2.5}/PM_{10}$) between two methods. Moreover, the correlation coefficient ($r^2$) is 0.84 between TPM results of the Korea standard test method and CleanSYS. These results suggested not only improvement of current test criteria in terms of technical and theoretical aspects. Further, additional measurements are required in various large stationary sources to compare current field data.

Characteristics of Heavy Metal Emissions from Stationary Sources (고정오염원에서의 중금속 배출특성 연구)

  • Park, Jung-Min;Lee, Sang-Bo;Cha, Jun-Seok;Kwon, Oh-Sang;Lee, Sang-Hak
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.574-583
    • /
    • 2008
  • The results of HAPs emission data using TRI (Toxic Release Inventory), SODAM (Source Data Management system) were investigated and the emissions of 7 heavy metals from their sources and emission processes were also analyzed. Questionnaire for source data analysis as well as the stack sampling were carried out for 17 factories among 6 selected industrial types. The annual amount of emissions was estimated based on the measured concentration and flow rates. All sources were operated with high efficiency control devices and the concentration levels of all heavy metals were shown to be below 0.1 to of regulation standard. The highest emission source of heavy metals was steel manufacturing industry with the annual emission of 342.9 kg/yr and followed by hazardous waste incinerator, paint manufacturing, nonferrous metal manufacturing, rolling & press goods manufacturing and storage battery manufacturing. In the case of Hg, the emissions were quite significant from electric acros of steel manufacturing industry, although the concentration level was below the emission standard, showing the necessity of specific care for its management.

Effect of Fuel Injection Timing on Nitrous Oxide Emission from Diesel Engine (디젤엔진에서 연료 분사시기가 아산화질소에 미치는 영향)

  • Yoo, Dong-Hoon
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.106-112
    • /
    • 2014
  • The diesel engine, which has high compression ratio than other heat engines, has been using as the main power source of marine transport. Especially, since marine diesel engines offer better specific fuel consumption (SFC), it is environment-friendly compared to those used in other industries. However, attentio should be focused on emissions such as nitrous oxide ($N_2O$) which is generated from combustion of low-grade fuels. Because $N_2O$ in the atmosphere is very stable, the global warming potential (GWP) of $N_2O$ is 310 times as large as that of $CO_2$, and it becomes a source of secondary contamination after photo-degradation in the stratosphere. It has been hitherto noted on the $N_2O$ exhaust characteristics from stationary power plants and land transportations, but reports on $N_2O$ emission from the marine diesel engine are very limited. In this experimental study, a author investigated $N_2O$ emission characteristics by using changed diesel fuel components of nitrogen and sulfur concentration, assessed on the factors which affect $N_2O$ generation in combustion. The experimental results showed that $N_2O$ emission exhibited increasement with increasing of sulfur concentration in fuel. However, all kinds of nitrogen component additives used in experiment could not change $N_2O$ emission.

A Study on the VOCs Emission Characteristics by the Light Duty Diesel and LPG Fueled Vehicles (소형승합차량 및 RV차량의 휘발성 유기 화합물 배출특성 변화에 관한 연구)

  • Eom, Myung-Do;Ryu, Jung-Ho;Han, Jong-Su;Lyu, Young-Sook;Kim, Dae-Wook;Kim, Jong-Choon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.8-13
    • /
    • 2008
  • Emissions from automobiles have long been considered a prime source of pollutants involved in smog formation and ozone production. Especially VOCs are associated with serious environmental problems such as photo-chemical smog as well as human health effects. Since motor vehicles are a major source of VOCs, estimating of emission from mobile source is the most important factor to control VOCs. VOCs are emitted from various pollution like motor vehicles, mobile and stationary source that has characteristics of toxicity, cancer-causing, bio-accumulation, durability in air and diffusion can exert a bad influence upon human health and environment. However we don't have any standard or regulation about VOCs emissions. This study is summarized as VOCs emission characteristics from in-use light-duty diesel and LPG fueled vehicles. The vehicle exhaust-gas test mode is CVS cycle and nier-10 cycles that developed on EPA and National Institute of Environmental Research. TO-14 method (Toxic Organic) was chosen for VOCs analysis from EPA in USA. This study results will be useful when make a emission factor and rule making of emission standard about domestic VOCs emission for the improve to air condition.

Emission Characteristics of Elemental Constituents in Fine Particulate Matter Using a Semi-continuous Measurement System (준 실시간 측정시스템을 이용한 미세입자 원소성분 배출특성 조사)

  • Park, Seung-Shik;Ondov, John M.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.190-201
    • /
    • 2010
  • Fine particulate matter < $1.8{\mu}m$ was collected as a slurry using the Semicontinuous Elements in Aerosol Sampler with time resolution of 30-min between May 23 and 27, 2002 at the Sydney Supersite, Florida, USA. Concentrations of 11 elements, i.e., Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn, in the collected slurry samples were determined off-line by simultaneous multi-element graphite furnace atomic absorption spectrometry. Temporal profiles of $SO_2$ and elemental concentrations combined with meteorological parameters such as wind direction and wind speed indicate that some transient events in their concentrations are highly correlated with the periods when the plume from an animal feed supplement processing facility influenced the Sydney sampling site. The peaking concentrations of the elemental species during the transient events varied clearly as the plume intensity varied, but the relative concentrations for As, Cr, Pb, and Zn with respect to Cd showed almost consistent values. During the transient events, metal concentrations increased by factors of >10~100 due to the influence of consistent plumes from an individual stationary source. Also the multi-variate air dispersion receptor model, which was previously developed by Park et al. (2005), was applied to ambient $SO_2$ and 8 elements (Al, As, Cd, Cr, Cu, Fe, Pb, and Zn) measurements between 20:00 May 23 and 09:30 May 24 when winds blew from between 70 and $85^{\circ}$, in which animal feed processing plant is situated, to determine emission and ambient source contributions rates of $SO_2$ and elements from one animal feed processing plant. Agreement between observed and predicted $SO_2$ concentrations was excellent (R of 0.99; and their ratio, $1.09{\pm}0.35$) when one emission source was used in the model. Average ratios of observed and predicted concentrations for As, Cd, Cr, Pb, and Zn varied from $0.83{\pm}0.26$ for Pb to $1.12{\pm}0.53$ for Cd.

PAHs Source Fingerprints for Municipal Incinerator, Motor Vehicle Fuels and Industrial Boilers Emission (발생원별에 따른 PAHs 배출특성)

  • 박찬구;윤중섭;김민영;손종열;모세영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.331-343
    • /
    • 2004
  • The results of individual PAH source profiles that can be applied to receptor model are as follows. The sum of 16 PAH concentrations was 391.41 ng/S㎥ in a tunnel. Phenanthrene was the most abundant compound among 16 PAH, and then pyrene, fluoranthene, anthracene, and naphthalene can be seen in elevated contents. 11,056.61 ng/S㎥ of 16 PAH concentrations in BC oil boiler was two times higher than 6,582.57 ng/S㎥) of those in LNG boiler. Naphthalene was the most abundant compound in both facilities. Phenanthrene, anthracene, and acenaphthylene were the second dominant compound group in order from both facilities. BC oil boiler had relatively high concentration of pyrene compared to LNG boiler that had high concentration of fluorene and did not detect pyrene. The sum of 16 PAH concentrations emitted from MSW incinerators after APCD (air pollution control device) was three times higher than those from MSW incinerators before APCD. However, the concentrations of more than 4-ring PAH compounds (e.g., benzo (a)anthracene) before APCD were higher than those after APCD. This fact implies that PAHs generated by combustion process are eliminated in APCD and they are continuously produced in stack or atmosphere by PAHs precursors.