• Title/Summary/Keyword: Static volume expansion system

Search Result 7, Processing Time 0.025 seconds

Development of Uncertainty Evaluation Model for Vacuum Measurement Standards (진공측정표준의 불확도 평가모델 개발)

  • Hong, S.S.;Lim, J.Y.;Shin, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.313-321
    • /
    • 2011
  • The Korea Research Institute of Standards and Science (KRISS) has three major vacuum systems: an ultrasonic interferometer manometer (UIM), a static volume expansion system (SVES), and an orifice-type dynamic expansion system (ODES). For each system explict measurement model equations with multiple variables are respectively given. According to ISO standards, all these system variables errors were used to calculate the expanded uncertainty (U).

Expansion of Sample OD Based on Probe Vehicle Data in a Ubiquitous Environment (유비쿼터스 환경의 프로브 차량 정보를 활용한 표본 OD 전수화 (제주시 시범사업지역을 대상으로))

  • Jeong, So-Young;Baek, Seung-Kirl;Kang, Jeong-Gyu
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.123-133
    • /
    • 2008
  • Information collection systems and applications in a ubiquitous environment has emerged as a leading issue in transportation and logistics. A productive application example is a traffic information collection system based on probe vehicles and wireless communication technology. Estimation of hourly OD pairs using probe OD data is a possible target. Since probe OD data consists of sample OD pairs, which vary over time and space, computation of sample rates of OD pairs and expansion of sample OD pairs into static OD pairs is required. In this paper, the authors proposed a method to estimate sample OD data with probe data in Jeju City and expand those into static OD data. Mean absolute percentage difference (MAPD) error between observed traffic volume and assigned traffic volume was about 22.9%. After removing abnormal data, MAPD error improved to 17.6%. Development of static OD estimation methods using probe vehicle data in a real environment is considered the main contribution of this paper.

Core design study of the Wielenga Innovation Static Salt Reactor (WISSR)

  • T. Wielenga;W.S. Yang;I. Khaleb
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.922-932
    • /
    • 2024
  • This paper presents the design features and preliminary design analysis results of the Wielenga Innovation Static Salt Reactor (WISSR). The WISSR incorporates features that make it both flexible and inherently safe. It is based on innovative technology that controls a nuclear reactor by moving molten salt fuel into or out of the core. The reactor is a low-pressure, fast spectrum transuranic (TRU) burner reactor. Inherent shutdown is achieved by a large negative reactivity feedback of the liquid fuel and by the expansion of fuel out of the core. The core is made of concentric, thin annular fuel chambers containing molten fuel salt. A molten salt coolant passes between the concentric fuel chambers to cool the core. The core has both fixed and variable volume fuel chambers. Pressure, applied by helium gas to fuel reservoirs below the core, pushes fuel out of a reservoir and up into a set of variable volume chambers. A control system monitors the density and temperature of the fuel throughout the core. Using NaCl-(TRU,U)Cl3 fuel and NaCl-KCl-MgCl2 coolant, a road-transportable compact WISSR core design was developed at a power level of 1250 MWt. Preliminary neutronics and thermal-hydraulics analyses demonstrate the technical feasibility of WISSR.

Transient Simulation of an Automotive Air-Conditioning System (자동차 에어컨 비정상과정 시뮬레이션)

  • 오상한;원성필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1089-1096
    • /
    • 2001
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as the key design variable. Therefore, understanding of the overall transient characteristics of the system is essential to the preliminary design as well as steady-state characteristics. The objective of this study is to develop a computer simulation model and estimate theoretical1y the transient performance of an automotive air-conditioning system. To accomplish this, a mathematical modelling of each component, such as compressor, condenser, expansion valve, and evaporator, is presented first of all. For a detailed calculation, condenser and evaporator are divided into many subsections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in an attempt to simplify the ana1ysis, but the quasi-static ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. The developed simulation model is validated with a comparison to laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed fairly well wish those of test data in this case.

  • PDF

Program Development for Drawing of 26 Properties and System Analysis on T-s Diagram of Water or Vapor (물의 T-s 선도 상에서 26 종류의 물성치 작도 및 시스템 해석 프로그램 개발)

  • Kim, Deok-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.157-164
    • /
    • 2008
  • The temperature-entropy diagram of water or vapor displays graphically the thermophysical properties, so it is very conveniently used in various thermal systems. On general T-s chart of water, there are temperature, pressure, quality, specific volume, specific enthalpy, specific entropy. However, various state and process values besides above properties can be plotted on T-s diagram. In this study, we developed the software drawing twenty six kinds of properties, that is temperature, pressure, quality, specific volume, specific internal energy, specific enthalpy, specific entropy, specific exergy, exergy ratio, density, isobaric specific heat, isochoric specific heat, ratio of specific heat, coefficient of viscosity, kinematic coefficient of viscosity, thermal conductivity, prandtl number, ion product, static dielectric constant, isentropic exponent, velocity of sound, joule-thomson coefficient, pressure coefficient, volumetric coefficient of expansion, isentropic compressibility, and isothermal compressibility. Also, this software can analyze and print the system values of mass flow rate, volume flow rate, internal energy flow rate, enthalpy flow rate, entropy flow rate, exergy flow rate, heat flow rate, power output, power efficiency, and reversible work. Additionally, this software support the functions such as MS-Power Point.

  • PDF

ICS(Interference Cancellation System) in Wireless Repeater Using Complex Singed Singed LMS Algorithm (Complex Singed-Singed LMS 적응 알고리즘을 사용한 간섭제거 중계기(ICS)연구)

  • Lee, Seong-Jae;Park, Yong-Wan;Hong, Seung-Mo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.10
    • /
    • pp.53-59
    • /
    • 2011
  • In recent years, mobile communication service is used extensively as a larger service area for the maintenance of quality of service required by the expansion of service areas and As the ever-increasing role in relays, and the location is relatively easy to install and less constrained costs, operating cost savings in terms of ICS(Interference Cancellation System) repeaters are required. However, an adaptive algorithm that is applied when updating the filter due to the increase in volume of operations increase the complexity of hardware implementation is fraught with many difficulties. In this paper, if there is a path that feedback. ICS repeater utilizing baseband signal processing for the removal of interfering signals from the feedback operation, significantly reducing the amount of reducing hardware complexity Complex Singed Signed LMS adaption algorithm is proposed. Proposed algorithm for evaluating the performance of Static channel WCDMA signal environment for the ICS, the results of the simulation algorithm, convergence speed and better performance in therms of convergence errors that are required through the implementation of the operation greatly reduces the amount of hardware complexity able to reduce the effect was visible.

Laboratory Performance Evaluation of Alternative Dowel Bar for Jointed Concrete Pavements (콘크리트 포장용 고내구성 대체 다웰바의 실내공용성 평가)

  • Park, Seong Tae;Park, Jun Young;Lee, Jae Hoon;Kim, Hyung Bae
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-36
    • /
    • 2013
  • PURPOSES: The problem under this circumstance is that the erosion not only drops strength of the steel dowel bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem, alternative dowers bars are developed. METHODS: In this study, the bearing stresses between the FRP tube dowel bar and concrete slab are calculated and compared with its allowable bearing stress to check its structural stability in the concrete pavement. These comparisons are conducted with several cross-sections of FRP tube dowel bars. Comprehensive laboratory tests including the shear load-deflection test on a full-scale specimen and the full-scale accelerated joint concrete pavement test are conducted and the results were compared with those from the steel dowel bar. RESULTS: In all cross-sections of FRP tube dowel bars, computed bearing stresses between the FRP tube dowel bar and concrete slab are less than their allowable stress levels. The pultrusion FRP-tube dowel bar show better performance on direct shear tests on full-scale specimen and static compression tests at full-scale concrete pavement joints than prepreg and filament-winding FRP-tube dowel bar. CONCLUSIONS: The FRP tube dowel bars as alternative dowel bar are invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Also, the pultrusion FRP-tube dowel bar performed very well on the laboratory evaluation.