• Title/Summary/Keyword: Static load

Search Result 2,572, Processing Time 0.039 seconds

A viscoelastic constitutive model of rubber under small oscillatory loads superimposed on large static deformation (정적 대변형에 중첩된 미소 동적 하중을 견디는 고무재료의 점탄성 구성방정식에 관한 연구)

  • Kim, Bong-Kyu;Youn, Sung-Kie
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.280-285
    • /
    • 2000
  • A viscoelastic constitutive equation of rubber that is under small oscillatory load superimposed on large static deformation is proposed. The proposed model is derived through linearization of Simo's viscoelastic constitutive model and reference configuration transformation. The proposed constitutive equation is extended to a generalized viscoelastic constitutive equation that includes widely used Mormin's model as a special case using objective stress increment. Static deformation correction factor is introduced to consider the influence of Pre-strain on the relaxation function. The proposed constitutive model is tested fer dynamic behavior of rubber specimens with different carbon black contents. It is concluded from the test that the viscoelastic constitutive equation for filled rubber must include the influence of the static deformation on the time effects. The suggested constitutive equation with static deformation correction factor shows good agreement with test values.

  • PDF

Load-settlement curve combining base and shaft resistance considering curing of cement paste

  • Seo, Mi Jeong;Park, Jong-Bae;Lee, Dongsoo;Lee, Jong-Sub
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.407-420
    • /
    • 2022
  • Embedded piles, which are typically used in Korea, are precast piles inserted into prebored ground with cement paste. Dynamic pile tests tend to underestimate the bearing capacity of embedded piles because of the undeveloped shaft resistance prior to the curing of the cement paste and the insufficient energy transferred after the curing. In this study, a resistance combination method using the base resistance before the cement paste is cured and the shaft resistance after the cement paste is cured is proposed to obtain a combined load-settlement curve from dynamic pile tests. Two pairs of embedded piles with diameters of 600 and 500 mm are installed. Each pair comprises one pile for the dynamic pile test and another pile for the static load test. The shape of the load-settlement curve obtained using the proposed method is similar to that obtained from the static load test. Thus, the resistances evaluated using the proposed method at selected settlements are similar to those obtained from the static load test. This study shows that the resistance combination method may be used effectively in dynamic pile tests to accurately evaluate the bearing capacity of embedded piles.

Fracture Toughness of Wheelset for High Speed Train on the Critical Locations (임계위치에서의 고속철도용 윤축의 파괴인성)

  • Kwon Seok-Jin,
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.865-871
    • /
    • 2004
  • The safety evaluations of railway wheel sets make use of the static fracture toughness obtained in ingot materials. The static fracture toughness of wheelset materials has been extensively studied by experiments, but the dynamic fracture toughness with respect to wheel set materials has not been studied enough yet. It is necessary to evaluate the characteristics of the fracture mechanics depending on each location for a full-scale wheel set for high-speed trains, because the load state for each location of the wheel set while running is different the contact load between the wheel and rail, cyclic stress in the wheel plate, etc. This paper deals with the fracture toughness depend on load rates. The fracture toughness depending on load rate data shows that once the downward curve from quasi-static values was reached, subsequent values showed a slow increase with respect to the impact velocity. This means that dynamic fracture toughness should be considered in the design code of the wheelset material.

  • PDF

A study on the equivalent static wind load estimation of large span roofs (대스팬 지붕구조물의 등가정적 풍하중 산정에 관한 연구)

  • Kim, Dae-Young;Kim, Ji-Young;Kim, Han-Young;Lee, Myung-Ho;Kim, Sang-Dae
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.245-251
    • /
    • 2004
  • This paper discuss the conditionally sampled actual wind pressure distributions causing peak quasi-static wind loads in the large span roofs using the wind pressures at many locations on dome models measured simultaneously in a wind tunnel. The actual extreme pressure distributions are compared itk load-response-correlation (LRC) method and the quasi-steady pressure distributions. Based on the results, the reason for the discrepancy in the LRC pressure distribution and the actual extreme pressure distribution are discussed. Futhermore, a brief discussion is made of the equivalent static wind load estimation for the large span roofs.

  • PDF

Analysis of Economical Validity for Implementation of Telematics in Construction Fields (Telematics 기술의 건설현장 적용을 위한 경제적 타당성 분석)

  • Lee Sung Hyun;Lee Dong Wook;Koo Ja Kyung;Lee Tai Sik
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.5
    • /
    • pp.444-453
    • /
    • 2005
  • The safety evaluations of railway wheelsets make use of the static fracture toughness obtained in ingot materials. The static fracture toughness of wheelset materials has been extensively studied by experiments, but the dynamic fracture toughness with respect to wheelset materials has not been studied enough yet. It is necessary to evaluate the characteristics of the fracture mechanics depending on each location for a full-scale wheelset for high-speed trains, because the load state for each location of the wheelset while running is different the contact load between the wheel and rail, cyclic stress in the wheel plate, etc. This paper deals with the fracture toughness depend on load rates. The fracture toughness depending on load rate data shows that once the downward curve from quasi-static values was reached, subsequent values showed a slow increase with respect to the impact velocity. This means that dynamic fracture toughness should be considered in the design code of the wheelset material.

An Experimental Study on Shear Behavior of High Strength Reinforced Concrete Beams using Input Steel Fiber (강섬유을 혼입한 고강도 철근콘크리트 보의 전단거동에 관한 실험적 연구)

  • 석인수;박종건;곽계환
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.277-282
    • /
    • 1999
  • Recently , the use of steel fibers has been increased in flexural members and beams of concrete structures ; such as bridge decks, highway roads, runway of airport , buildings , ete.. An experimental investigation of the shear behavior of high-strength reinforced concrete beams using input steel fiber was conducted. However only a few experimental tests have been carried out under static loading . The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking , crack patters, fracture modes. The load versus strain and load versus deflection relation were obtained from the static test.

  • PDF

The Comparison of Collapsible Characteristics on Decomposed Granite Soil and Loess (풍화 화연토와 loess의 붕괴특성 비교)

  • 도덕현
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.7-14
    • /
    • 1986
  • The structure of the collapsible soils, such as decomposed granite soil and loess, were examined by the odeometer test, SEM & XES analysis and static & cyclic triaxial test, and hove this structure have influences upon the collapsible behaviour under static and cyclic load was investigated. The study results obtained are as follows; 1. The macropores space of decomposed granite soil (rd=1.50g/cm3) and loess (rd=1.43g/cm3) used in this test were well developed, and showed the behaviour of collapsible soil. 2. Collapsible soil has high resistance on the strain under natural moisture content, however, the resistance on the strain was sharply decreased by the absorption and increasing load since its special structure was destructed. 3. Under the static load, the strain of collapsible soil was high by the viscous flow of the cyclic bonds with time lapse, but Infer the cyclic load, the strain of collapsible soil was low since the tinge needed to destruct the bonding force of clay was not enough. 4. The understanding about the cyclic behaviour of collapsible soil may be helpful to predict the elastic & residual strain of the foundations by the earthquake together with the damage by the additional failure.

  • PDF

A Study on the Shear Strength Properties of Reinforced Concrete Beams according to Shear Span-Depth Ratio (전단지간비에 따른 철근콘크리트 보의 전단강도특성에 관한 연구)

  • Park, Jong-Gun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.93-100
    • /
    • 2000
  • The purpose of this study is to investigate the shear behavior of reinforced concrete beams according to small shear span-depth ratio between a/d=1.5, 2.8, 3.6. In general, shear strength of reinforced concrete beams is dependent on the compressive strength of concrete the longitudinal steel ratio, the shear span-depth ratio and shear reinforcement. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns, fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The test results on shear strength were compared with results obtained by the formulas of ACI code 318-95. The shear strength of reinforced concrete beams exceeded those predicted following present ACI code 318-95(11-6).

  • PDF

Static and dynamic responses of a tied-arch railway bridge under train load

  • Gou, Hongye;Yang, Biao;Guo, Wei;Bao, Yi
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.13-22
    • /
    • 2019
  • In this paper, the static and dynamic responses of a tied-arch railway bridge under train load were studied through field tests. The deflection and stresses of the bridge were measured in different static loading scenarios. The dynamic load test of the bridge was carried out under the excitation of running train at different speeds. The dynamic properties of the bridge were investigated in terms of the free vibration characteristics, dynamic coefficients, accelerations, displacements and derailment coefficients. The results indicate that the tie of the measuring point has a significant effect on the vertical movement of the test section. The dynamic responses of arch bridge are insensitive to the number of trains. The derailment coefficients of locomotive and carriage increase with the train speed and symmetrically distributed double-line loads reduce the train derailment probability.

Investigation on the failure type of tower segments under equivalent static wind loads

  • Li, Yue;Xie, Qiang;Yang, Zheng
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.161-171
    • /
    • 2022
  • This paper presents a failure type assessment curve method to judge the failure type of transmission tower segments. This novel method considers the equivalent static wind load characteristics and the transmission tower members' load-bearing capacities based on numerical simulations. This method can help judge the failure types according to the relative positions between the actual state points and the assessment curves of transmission tower segments. If the extended line of the actual state point intersects with the horizontal part's assessment curve, the segment would lose load-bearing capacity due to the diagonal members' failure. Another scenario occurs when the intersection point is in the oblique part, indicating that the broken main members have caused the tower segment to fail. The proposed method is verified by practical engineering case studies and static tests on the scaled tower segments.