• Title/Summary/Keyword: Static fracture

Search Result 369, Processing Time 0.033 seconds

Experimental Investigation of the Dynamic Fracture Toughness for Aluminum Alumina Whisker Metal Matrix Composites (콤포케스팅법에 의해 제조된 알루미늄 금속복합재료의 동파괴 인성치에 관한 연구)

  • Kim, M.S.;Lee, H.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.152-160
    • /
    • 1993
  • This paper presents experimental study of the static and dynamic fracture toughness behavior of a A1-6061 aluminum alloy reinforced alumina( .delta. -A1$_{2}$0$_{3}$) whiskers with 5%, 10%, 15% volume fraction. The static fracture tests using three-point bending specimen were performed by UTM25T. And drop weight impact tester performing dynamic fracture tests was used to measure dynamic locads applied to a fatigue-precracked specimes. The oneset of crack initiation was detected uwing a strain gage bonded near a crack tip. The value of static fracture toughness $K_{IC}$ and dynamic fracture toughness $K_{ID}$ were decided on the basis of linear elastic fracture mechanics. The effects of fiber volume fraction and loading on fracture toughness were investigated. The distribution of whiskers, bonding state and fracture interfaces involved in void, fiber pull-out state were investigated by optical microscopy(OM) and scanning electron microscopy(SEM)

  • PDF

Static and Dynamic Fracture Toughness of Wheelset for High Speed Train (고속철도용 윤축의 정${\cdot}$동적파괴인성 평가)

  • Kwon Seok-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.210-215
    • /
    • 2005
  • The safety evaluations of railway wheelsets make use of the static fracture toughness obtained in ingot materials. The static fracture toughness of wheelset materials has been extensively studied by experiments, but the dynamic fracture toughness with respect to wheelset materials has not been studied enough yet. It is necessary to evaluate the characteristics of the fracture mechanics depending on each location for a full-scale wheelset for high-speed trains, because the load state for each location of the wheelset while running is different the contact load between the wheel and rail, cyclic stress in the wheel plate, etc. This paper deals with the fracture toughness depend on load rates. The fracture toughness depending on load rate data shows that once the downward curve from quasi-static values was reached, subsequent values showed a slow increase with respect to the impact velocity. This means that dynamic fracture toughness should be considered in the design code of the wheelset material.

Static and Fatigue Fracture Assessment of Hybrid Composite Joint for the Tilting Car Body (틸팅차량용 차체의 Hybrid 복합재 접합체결부의 정적 및 피로 파괴 평가)

  • Jung, Dal-Woo;Kim, Jung-Seok;Seo, Sueng-Il;Jo, Se-Hyun;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.166-173
    • /
    • 2007
  • Fatigue fracture behavior of a hybrid bolted joint was evaluated in comparison to the case of static fracture. Two kinds of specimens were fabricated for the mechanical tests; a hybrid bolted joint specimen for the shear test and a hybrid joint part specimen applied in the real tilting car body for the bending test. Characteristic fracture behaviors of those specimens under cyclic toads were obviously different from the case under static loads. For the hybrid bolted joint specimen, static shear loading caused the fracture of the bolt body itself in a pure shear mode, whereas cyclic shear loading brought about the fracture at the site of local tensile stress concentration. For the hybrid joint part specimen, static bend loading caused the shear deformation and fracture in the honeycomb core region, while cyclic bend loading did the delamination along the interface between composite skin and honeycomb core layers as well as the fracture of welded joint part. Experimental results obtained by static and fatigue tests were reflected in modifications of design parameters of the hybrid joint structure in the real tilting car body.

Fracture Toughness of Wheelset for High Speed Train on the Critical Locations (임계위치에서의 고속철도용 윤축의 파괴인성)

  • Kwon Seok-Jin,
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.865-871
    • /
    • 2004
  • The safety evaluations of railway wheel sets make use of the static fracture toughness obtained in ingot materials. The static fracture toughness of wheelset materials has been extensively studied by experiments, but the dynamic fracture toughness with respect to wheel set materials has not been studied enough yet. It is necessary to evaluate the characteristics of the fracture mechanics depending on each location for a full-scale wheel set for high-speed trains, because the load state for each location of the wheel set while running is different the contact load between the wheel and rail, cyclic stress in the wheel plate, etc. This paper deals with the fracture toughness depend on load rates. The fracture toughness depending on load rate data shows that once the downward curve from quasi-static values was reached, subsequent values showed a slow increase with respect to the impact velocity. This means that dynamic fracture toughness should be considered in the design code of the wheelset material.

  • PDF

Analysis of Failure Criterion for Combustion Pipe with Notch using Effective Distance (유효거리를 이용한 연소기관 노치부의 파손기준 해석)

  • Kim, Duck-Hoi;Kim, Jae-Hoon;Moon, Soon-Il
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1-6
    • /
    • 2004
  • In this study, the intrinsic static/dynamic fracture toughness of Al 7175=T74 is evaluated from the apparent static/ dynamic toughness of notched specimen, The critical average stress fracture model is suggested to establish the relationship to predict the intrinsic fracture toughness from the apparent fracture toughness of a notched specimen. The critical average stress fracture model is established using the relation between the notch root radius and the effective distance calculated by finite element analysis. Also, effective distance is applied to estimate the failure criterion for the combustion pipe with notch. It is conclude that the true fracture toughness can be estimated from test results of apparent fracture toughness measured by using a notched specimen. Also, the effective In this study, the intrinsic static/dynamic fracture toughness of Al 7175=T74 is evaluated from the apparent static/ dynamic toughness of notched specimen, The critical average stress fracture model is suggested to establish the relationship to predict the intrinsic fracture toughness from the apparent fracture toughness of a notched specimen. The critical average stress fracture model is established using the relation between the notch root radius and the effective distance calculated by finite element analysis. Also, effective distance is applied to estimate the failure criterion for the combustion pipe with notch. It is conclude that the true fracture toughness can be estimated from test results of apparent fracture toughness measured by using a notched specimen. Also, the effective distance can be used to evaluate the failure criterion of structure with notch.

  • PDF

Analysis of Economical Validity for Implementation of Telematics in Construction Fields (Telematics 기술의 건설현장 적용을 위한 경제적 타당성 분석)

  • Lee Sung Hyun;Lee Dong Wook;Koo Ja Kyung;Lee Tai Sik
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.5
    • /
    • pp.444-453
    • /
    • 2005
  • The safety evaluations of railway wheelsets make use of the static fracture toughness obtained in ingot materials. The static fracture toughness of wheelset materials has been extensively studied by experiments, but the dynamic fracture toughness with respect to wheelset materials has not been studied enough yet. It is necessary to evaluate the characteristics of the fracture mechanics depending on each location for a full-scale wheelset for high-speed trains, because the load state for each location of the wheelset while running is different the contact load between the wheel and rail, cyclic stress in the wheel plate, etc. This paper deals with the fracture toughness depend on load rates. The fracture toughness depending on load rate data shows that once the downward curve from quasi-static values was reached, subsequent values showed a slow increase with respect to the impact velocity. This means that dynamic fracture toughness should be considered in the design code of the wheelset material.

Impact Fracture Behaviors of Zr-Based Bulk Amorphous Metals (Zr-기 벌크 아몰퍼스 금속의 충격 파괴 거동)

  • Ko, Dong-Kyun;Jeong, Young-Jin;Shin, Hyung-Seop;Oh, Sang-Yeob
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1246-1251
    • /
    • 2003
  • The fracture behaviors of Zr-based bulk amorphous metals(BAMs) having compositions of $Zr_{55}Al_{10}Ni_{5}Cu_{30}$, were investigated under impact loading and quasi-static conditions. For experiments, a newly devised instrumented impact testing apparatus and the subsize Charpy specimens were used. The influences of loading rate and the notch shape on the fracture behavior of the Zr-based BAM were examined. The Zr-based BAMs showed an elastic deformation behavior without any plastic deformation on it before fracture. Most fracture energies were absorbed in the process of the crack initiation. The maximum load and fracture absorbed energy under quasi-static condition were larger than those under impact condition. However, there existed relatively insignificant notch shape effect. Fracture surfaces under impact loading were smoother than those under quasi-static loading. The absorbed fracture energy appeared differently depending on the extent of the vein-like pattern region due to the shear bands developed at the notch tip. It can be found that the fracture energy of the Zr-Al-Ni-Cu alloy is closely related with the development of shear bands during fracture.

  • PDF

Evaluation of Fracture Toughness of Al alloys for Propulsive Engine using Strain Measurement (변형률 측정을 이용한 추진기관용 Al 합금의 파괴인성 평가)

  • 김재훈;김덕회;임동규;박성욱;문순일
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.13-21
    • /
    • 2002
  • The tincture toughness is evaluated by using U(compact tension) and 3PB(three point bending) specimens of AI alloys far propulsive engine. To evaluate the static fracture toughness, strain gage method is used. The static fracture toughness obtained from the strain measurement is compared with the results by ASTM standard and FEM analysis. For the reliable evaluation of fracture toughness, strain gages are attached at various positions.

Evaluation of Critical Notch radius using Notch/Crack Critical Average Stress Fracture Model (노치/균열 임계평균응력 파손모델을 이용한 임계노치반경 평가)

  • 김재훈;김덕회;김기수;안병욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1358-1361
    • /
    • 2003
  • In this study, intrinsic static/dynamic fracture toughness of Al 7175-T74 are evaluated from the apparent static/dynamic toughness of notched specimen. The notch/crack critical average stress fracture model is suggested to establish the relationship to predict the intrinsic fracture toughness from the apparent fracture toughness of a notched specimen. The notch/crack critical average stress fracture model is established using the relation between the notch root radius and the effective distance calculated by finite element analysis. It is conclude that the true fracture toughness can be estimated from test results of apparent fracture toughness measured by using a notched specimen. Also, critical notch root radius can be predicted by notch/crack critical average stress fracture model.

  • PDF

Dynamic and Quasi-Static Fracture Toughness of $Al_2O_3$ and $Al_2O_3$ Ceramic Matrix Composite Reinforced with Sic Whiskers ($Al_2O_3$$Al_2O_3$ -$SiC_w$ 복합재료의 동적 및 정적 파괴인성에 관한 연구)

  • 조경목;이성학;표성규;장영원
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.4
    • /
    • pp.457-464
    • /
    • 1990
  • This paper presents the influence of the loading rate on the room temperature fracture toughness of a brittle Al2O3 and a SiC whisker reinforced Al2O3 composite. Dynamic fracture toughness tests were conduced using compressive fatigue pre-cracked notched round bars loaded in tension to produce a stress intensity rate K1=106 MPa√m/sec. The experimental results show that for each loading rate the fracture toughness values obtained for the ceramic matrix composite are higher than the corresponding values for the single phase alumina. In addition, both the reinforced and unreinforced ceramic are singnificantly tougher under dynamic loading than static loading. This dynamic and quasi-static fracture initiation behaviro can be interpreted by identifying quantitatively the mode of fractuer initiation as a function of loading rate.

  • PDF