• Title/Summary/Keyword: Static fatigue

Search Result 610, Processing Time 0.027 seconds

Behavior of Fatigue Crack Initiation and Growth in SM45C Steel under Biaxial Loading (이축하중을 받는 SM45C강의 피로균열의 발생과 성장거동)

  • KIM SANG-TAE;PARK SUN-HONG;KWUN SOOK-IN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.84-90
    • /
    • 2004
  • Fatigue tests were conducted on SM45C steel using hour-glass shaped smooth tubular specimen under biaxial loading in order to investigate the crack formation and growth at room temperature. Three types of loading systems, were employed fully-reserved cyclic torsion without a superimposed static tension or compression fully-reserved cyclic torsion with a superimposed static tension and fully-reserved cyclic torsion with a superimposed static compression. The test results showed that a superimposed static tensile mean stress reduced fatigue life however a superimposed static compressive mean stress increased fatigue life. Experimental results indicated that cracks were initiated on planes of maximum shear strain whether or not the mean stresses were superimposed. A biaxial mean stress had an effect on the direction that the cracks nucleated and propagated at stage 1 (mode II).

Statistical Analysis for Fatigue Lifetime of Ceramics (세라믹스의 피로수명에 대한 통계적 분석)

  • 박성은;김성욱;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.927-934
    • /
    • 1997
  • Static and cyclic fatigue tests were carried out for alumina specimen to study the statistical analyses (normal, lognormal and Weibull distribution) of fatigue lifetime data and nominal initial crack length data. Fatigue lifetime data followed Weibull distribution better than normal or lognormal distribution, for the shape parameter of the notched specimen was larger than that of the unnotched specimen. The nominal initial crack length data obtained from fatigue lifetime followed the lognormal and Weibull distribution better than normal distribution, for the coefficient of variation of the unnotched specimen was larger than that of the notched specimen, and shape parameter of unnotched specimen was smaller than that of the notched specimen.

  • PDF

The Prediction of Fatigue Life According to the Determination of the Parameter in Residual Strength Degradation Model (잔류강도 저하모델의 파라미터결정법에 따른 피로수명예측)

  • 김도식;김정규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2053-2061
    • /
    • 1994
  • The static and fatigue tensile tests have been conduted to predict the fatigue life of 8-harness satin woven and plain woven carbon/epoxy composite plates containing a circular hole. A fatigue residual strength degradation model, based on the assumption that the residual strength for unnotched specimen decreases monotonically, has been applied to predict statistically the fatigue life of materials used in this study. To determine the parameters(c, b and K) of the residual strength degradation model, the minimization technique and the maximum likelihood method are used. Agreement of the converted ultimate strength by using the minimization technique with the static ultimate strength is reasonably good. Therefore, the minimization technique is more adjustable in the determination of the parameter and the prediction of the fatigue life than the maximum likelihood method.

Safety Evaluation of Bogie Frame for Tilting Railway Vehicles by Fatigue and Nondestructive Tests (피로시험 및 비파괴 검사를 통한 틸팅열차용 주행장치 프레임의 안전성 평가)

  • Kim Jung-Seok;Kim Nam-Po
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.5
    • /
    • pp.419-424
    • /
    • 2005
  • This paper has performed fatigue and nondestructive test of bogie frame for Korean tilting train. Before the fatigue test, static tests were carried out. From the test, the structural safety was investigated using Goodman diagram. After the static test, the fatigue test were conducted under tilting load conditions. The fatigue test was conducted for $10{\times}10^6$ cycles. During the fatigue test, the nondestructive tests using magnetic particle and liquid penetrant were performed at $6{\times}10^6$ cycle and $10{\times}10^6$cycle. From the crack detection tests, it was known that there was no fatigue crack in the bogie frame.

Fatigue Strength Evaluation of T-Peel Adhesive Joing for Light Weight Material (경량 재료의 T형 접합이음의 피로강도 평가)

  • Lee, K.Y.;Kong, B.S.;Choi, H.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.166-173
    • /
    • 1998
  • The evaluation of joint fatigue strength of light weight materials for an electrical vehicle body has been performed through T-peel joint tests with the design parameters such as joint style, adherend type, adherend thickness, adhesive thickness, and various adhesives. Fatigue strength was evaluated through 5-Hz, tension-tension, load controlled test with the zero stress ratio. It was observed that the fatigue strength of the joint increases with the increase of the adherend thickness. With the increase of the adhesive thickness, however, the fatigue strength of the joint increases insignificantly. An aluminum-FRP adherend combination shows much higher fatigue strength than an aluminum-aluminum adherend combination. The results of fatigue tests were found to be consistent with those of static tests.

  • PDF

Fatigue Life Prediction for the Skin Structures of Aircraft Sensor Pod Under Acoustic Load with Mean Stress (평균 응력을 고려한 음향 하중을 받는 항공기 센서 포드 외피 구조의 내구 수명 분석)

  • Min-Hyeok Jeon;Yeon-Ju Kim;Hyun-Jun Cho;Mi-Yeon Lee;In-Gul Kim;Hansol Lee;Jae Myung Cho;Jong In Bae;Ki-Young Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • The skin structure of sensor pod mounted on the exterior of aircraft can be exposed to the acoustic dynamic load and static load such as aerodynamic pressure and inertial load during flight. Fatigue life prediction of structural model under acoustic load should be performed and also differential stiffness of model modified by static load should be considered. The acoustic noise test spectrum of MIL-STD-810G was applied to the structural model and the stress response power spectral density (PSD) was calculated. The frequency response analysis was performed with or without prestress induced by inplane static load, and the response spectrum was compared. Time series data was generated using the calculated PSD, and the time and frequency domain fatigue life were predicted and compared. The variation of stress response spectrum due to static load and predicted fatigue life according to the different structural model considering mean stress were examined and decreasing fatigue life was observed in the model with prestress of compressive static load.

Enhancement and Evaluation of Fatigue Resistance for Spine Fixation System (척추고정장치의 피로성능 평가와 향상)

  • Kim, Hyun-Mook;Kim, Sung-Kon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.142-147
    • /
    • 2009
  • Spinal fixation systems provide surgical versatility, but the complexity of their design reduces their strength and fatigue resistance. There is no published data on the mechanical properties of such screws. Screws were assembled according to a vertebrectomy model for destructive mechanical testing. A group of two assemblies was tested in static compression. One group was applied to surface a grit blasting method and another group was applied to surface a bead blasting method. Modes of failure, yield, and ultimate strength, yield stiffness, and cycles to failure were determined for six assembles. Static compression 2% offset yield load ranges was from 327 to 419N. Fatigue loads were determined two levels, 37.5% and 50% of the average load from static compression ultimate load. An assembly of bead blasting treatment only achieved 5 million cycles at 37.5% level in compression bending.

Comparison and Evaluation of Load test Methods for Aluminum Car Body (알루미늄 차체 하중 시험 방법에 관한 비교 평가)

  • 서승일;박춘수;신병천
    • Proceedings of the KSR Conference
    • /
    • 2003.10a
    • /
    • pp.187-191
    • /
    • 2003
  • Aluminum carbody for rolling stocks is light and perfectly recycled, but includes severe defects which are very dangerous to fatigue strength. Static load test has been performed up to date to assess structural safety of the carbody. However, static load test is not sufficient to evaluate fatigue strength of the carbody, because fatigue failure is caused by dynamic load. In this study, the established load test methods for carbody are described and the characteristics of the methods are discussed. Also, a testing method to simulate dynamic loading condition is proposed for evaluation of fatigue strength of the carbody The results by the proposed testing method are compared with the results by the static load test and new findings are discussed.

  • PDF

Evaluation of static and fatigue strength for end trailer bogie (단부객차대차의 정적강도 및 피로강도 평가)

  • Cho, Woo-Kang;Han, Sung-Wook;Song, Si-Yeop;Park, Guen-Soo;Park, Hyung-Soon
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.155-161
    • /
    • 2007
  • A bogie frame is typical safty part of railway vehicle. Main performance of a bogie frame is to support a car body and passenger weight and transfer traction and braking force. This paper is to evaluate the static strength and fatigue strength for the end trailer bogie with UIC 615-4 code. Therefore stress analysis of the end trailer bogie frame has been performed for various loading condition according to the UIC 615-4 code and haigh diagram is used for evaluation of fatigue strength. By the results of these analysis, static and fatigue strength of the end trailer bogie is satisfied with a applied criterion.

  • PDF

Fatigue Assessment of Hybrid Composite Joint for the Tilting Car Body (틸팅 차량용 차체의 하이브리드 복합재 접합체결부의 내구성 평가)

  • Jung, Dal-Woo;Choi, Nak-Sam;Kim, Jung-Seok;Seo, Sueng-Il;Jo, Se-Hyun
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.357-361
    • /
    • 2006
  • Fatigue fracture behavior of a hybrid joint part with bolting was evaluated in comparison to the case of static fracture. Hybrid joint part specimens for bending test were made with layers of CFRP and aluminum honeycomb. Characteristic fracture behaviors of those specimens were obviously different under static and cyclic loads. Static bending load showed the shear deformation at the honeycomb core, whereas cyclic bending load caused the delamination between CFRP skin layers and honeycomb core. Experimental results obtained by static and fatigue tests were considered in modifications of design parameters of the hybrid joint.

  • PDF