• Title/Summary/Keyword: Static electric field

Search Result 96, Processing Time 0.018 seconds

Characteristics of DC Corona Discharges Caused at the tip of a Needle-shaped Electrode Placed in the Homogeneous Electric Fields (균등전계 중에 놓인 침상 전극의 끝단에서 발생한 직류 코로나방전 특성)

  • Kim, Tae-Ki;Kim, Seung-Min;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.74-81
    • /
    • 2015
  • In the measurement of atmospheric static electric field, it is important to know characteristics of corona discharges caused at the tip of test electrode. This paper presents the fundamental data of DC corona discharges that occurred at the tip of a needle-shaped electrode placed in the homogeneous background electric field which simulates the atmospheric static field under thundercloud. The major characteristics of interest for this purpose are the polarity effect of corona discharges and the magnitudes and time intervals of corona current pulses. The experimental set-up consists of the plate-to-plate configuration with a needle-shaped protrusion, DC power supply, and voltage and current measuring devices. As a result of experiments, the polarity dependence of corona pulses is significantly pronounced. The time intervals between successive corona pulses in the negative polarity is much longer than those in the positive polarity. The time intervals for both polarities is drastically decreased as the applied electric field is increased. Also the magnitudes of the positive corona pulses are slightly changed with an increase in applied electric field, but those of the negative corona pulses are linearly increased with increasing the applied electric fields.

A Feasibility Study on the 3-Dimensional Flow of the Jet under the Static Electromagnetic Field

  • Cho I. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.144-145
    • /
    • 2003
  • A feasibility study on the alternating jet flow under the static electromagnetic field was carried out. When a fluid with electrical conductivity lies in the static electromagnetic field and moves electric current occurs in the fluid. Due to the electromagnetic field and the electric current, lorentz force generates in the fluid, which undergo the 'breaking' effect to the fluid. In order to simulate the complex fluid flow in the magnetic field, electromagnetic and fluid flow analysis need to be solved simultaneously. In the present study, a SOLA (SOLution Algorithm) scheme was used in order to calculate electromagnetic and fluid flow field. Jet flow without an electromagnetic field was compared with analytical solution in order to validate the flow analysis scheme. Effect of jet velocity on the flow pattern down the jet was investigated.

  • PDF

Field Control Type Electrostatic Charge Neutralizer (전계 제어형 정전하 중화장치)

  • Jeong, Seok-Hwan;Lee, Dae-Hui;Mun, Jae-Deok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.469-474
    • /
    • 1999
  • Methods and systems to remove static electricity are requested in the field of industry because the static electricity causes a flammable gas explosion or fire and a reduction of production rate in manufacturing semiconductor devices and so on. This paper is a basic study about a new structure of electrode system to control the quantities of generated ions and to solve the problem of dust attachment to needle electrode. In addition, a new type field controlled electrostatic charge neutralizer was proposed, and it could control the electric field in the end of the needle electrode by controlling the voltage of the third electrode around the tip of the needle electrode. As aresult, it was possible to control the quantities of generated ion by controlling the electric field in the needle electrode with the third electrode, which shows the possibilities to solve the nonequilibrium of generated ions in ac power source and the problem of the dust in the needle electrode.

  • PDF

Motion of Conductive Spherical Particle under Uniform Electric Field (평등전계에서 도전성 구형 입자의 운동)

  • Lim, Hun-Chan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.39-47
    • /
    • 2011
  • The motion of a conductive spherical particle under uniform electric field is investigated in order to find a suitable method for removing the conducting solid impurities contained in liquid plastic. When the positive dc voltage applied to the upper electrode, the vertical up-and-down motion of a charged particle by electrostatic force is observed by a charge-coupled device (CCD) camera or a high-speed video camera. The experimental data of the static threshold voltage by which the particle starts to move toward the counter electrode in air or silicone oil are in good agreement with theoretical value. When the applied voltage is larger than the static threshold voltage, the particle motion pattern in silicone oil consists of four stages: upward motion, stopping at the upper electrode, downward motion and stopping at the lower electrode. The stopping motion on the electrode is thought to be caused by the liquid flow accompanied by the particle motion. The particle charge calculated by integrating the pulse current, which is generated by the charge exchange between the electrode and the particle, is approximately 0.1~0.25 times of the theoretical value. This study is expected to help understand the electric properties of microparticles in oil circuit breaker (OCB) and oil transformer and improve their performance and longevity.

A Study on the Design Parameters of the Static Ring in the Ultra-high Voltage Non-uniform Electric Field (초고압 불평등 전계에서 정전링 설계변수에 대한 연구)

  • Kim, Jin-Sung;Seo, Min-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.577-582
    • /
    • 2020
  • Electricity produced at power plants is distributed to consumers through several stages of substations. At this time, an ultra-high voltage transformer is needed in the initial transmission stage to transmit a voltage suitable for each consumer. A high voltage, non-uniform electric field is formed at the end of the winding of the ultra-high voltage transformer, which carries a risk of dielectric breakdown. The winding of the ultra-high voltage transformer is an electrode, which is the key to converting the magnitude of the voltage. A non-uniform electric field is formed along the shape of the winding end, resulting in high electrical stress. The static ring installed at the upper and lower ends of the winding is used to disperse the stress at the winding end. Several variables should be considered when designing a static ring. Among them, this study examined how the curvature of the static ring, the thickness of the insulating paper, the number of barriers, and barrier thickness affect the electrical stress of the static ring using the Finite Element Method. Suggestions to be considered when designing the static ring are proposed through the FEM results.

Study on the Streaming Electrification of Insulating oil Under Electricfield (전계가 가해진 절연유의 유동대전 특성 고찰)

  • 허창수;정중일
    • Electrical & Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.334-341
    • /
    • 1997
  • Streaming electrification on insulating paper and pressboard under D.C. and A.C. electric field was investigated by using paper tubes and oil circulation apparatus. At first, flowing of static charges as measured with no electric field. As the temperature of oil increased, the measured current curve hows peak. As the velocity increased, it shows increasing exponential curve. Then, we applied A.C. and D.C. electric field on paper tube and the current from relaxation tank to earth was measured, which other factors such as temperature and velocity were varied like case of no electric field. The ions in oil carry the charges. So electric field makes asymmetry effect, and electrophoretic effect on ions in oil. We find that as the electric field intensity increased, the charges which were made by electric double layer were increased. The charge vs. velocity curve made peak point at a velocity.

  • PDF

A study on design of optimal structure of TEM cell for the characteristic impedance matching and analysis of the electric field distribution (특성 임피던스 정합을 위한 TEM CELL의 최적 구조 설계와 전계 분포 해석에 관한 연구)

  • 정성영;이중근
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.99-110
    • /
    • 1996
  • In this paper, the analysis o fthe electric field distribution for TEM cell which is matched iwth 50 is performed, and the relations of variables for characteristic impedance are derived. Quasi-static approximations are used to calculate the fiedl strength of the internal field of TEM cell. The results of the improved method for analysis of the electric field is compared with that of R.J. Spigel. and the improved method for characteristic impedance and the results of numerical analysis are shown.

  • PDF

A New Method to Estimate the Induced Electric Field in the Human Child Exposed to a 100 kHz-10 MHz Magnetic Field Using Body Size Parameters

  • Park, Young-Min;Song, Hye-Jin;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.174-180
    • /
    • 2014
  • In this paper, a new and simple method is proposed to quickly estimate the induced electric field in the human child exposed to a 100 kHz-10 MHz magnetic field, for the sake of electromagnetic field (EMF) safety assessment. The quasi-static finite-difference time-domain (FDTD) method is used to calculate the induced electric fields in high resolution 3D human child models with various body size parameters, in order to derive the correction factor for the estimation equation. The calculations are repeated for various frequencies and incident angles of the magnetic field. Based on these calculation results, a new and simple estimation equation for the 99th percentile value of the body electric field is derived that depends on the body size parameters, and the incident magnetic field. The estimation errors were equal to or less than 5.1%, for all cases considered.

4H-SiC Curvature VDMOSFET with 3.3kV Breakdown Voltage (3.3kV 항복 전압을 갖는 4H-SiC Curvature VDMOSFET)

  • Kim, Tae-Hong;Jeong, Chung-Bu;Goh, Jin-Young;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.916-921
    • /
    • 2018
  • In this paper, we analyzed the power MOSFET devices for high voltage and high current operation. 4H-SiC was used instead of Si to improve the static characteristics of the device. Since 4H-SiC has a high critical electric field due to wide band gap, 4H-SiC is more advantageous than Si in high voltage and high current operation. In the conventional VDMOSFET structure using 4H-SiC, the breakdown voltage is limited due to the electric field crowding at the edge of the p-base region. Therefore, in this paper, we propose a Curvature VDMOSFET structure that improves the breakdown voltage and the static characteristics by reducing the electric field crowding by giving curvature to the edge of the p-base region. The static characteristics of conventional VDMOSFET and curvature VDMOSFET are compared and analyzed through TCAD simulation. The Curvature VDMOSFET has a breakdown voltage of 68.6% higher than that of the conventional structure without increasing on-resistance.

Design Using Finite Element Analysis of a Switched Reluctance Motor for Electric Vehicle

  • Ohyama Kazuhiro;Nashed Maged Naguib F.;Aso Kenichi;Fujii Hiroaki;Uehara Hitoshi
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.163-171
    • /
    • 2006
  • In this paper, a Switched Reluctance Motor (SRM) employed in an electric vehicle (EV) is designed using the finite element method (FEM). The static torque of the SRM is estimated through magnetic field analysis. The SRM temperature rise over operation time is estimated through heat transfer analysis. First, static torque and temperature rise over the time of 600W SRM is included in the experiment set, and are compared with the calculated results using the FEM under the same conditions. The validity of the magnetic field analysis and heat transfer analysis is verified by the comparisons. In addition, a 60 [kW] SRM employed in an EV, whose output characteristics are equal to a 1500 [cc] gasoline engine, is designed under magnetic field analysis and heat transfer analysis.