• Title/Summary/Keyword: Static crack growth

Search Result 73, Processing Time 0.033 seconds

A Study on the 43$0^{\circ}C$ Degradation Behavior of Cast Stainless Steel(CF8M)(I);Evaluation of Degradation mechanism, Static and Fatigue Strength (주조 스테인리스강 CF8M의 43$0^{\circ}C$ 열화거동에 관한 연구(I);열화기구.정적 및 피로강도평가)

  • Gwon, Jae-Do;Park, Jung-Cheol;Lee, Yong-Seon;Lee, U-Ho;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1910-1916
    • /
    • 2000
  • The five classes of the thermally aged CF8M specimen are prepared using an artificially accelerated aging method. Namely, after the specimens are held for 100, 300, 900, 1800, and 3600hrs at 430$^{\circ}C$ respectively, the specimens are water-cooled to room temperature. The impact energy variations are measures for both the aged and virgin specimens through the Charpy impact tests in addition to the microstructure observation, tensile, hardness and fatigue crack growth tests. From the present investigation the following results are obtained : 1) The difference among the thermally degraded specimens can be distinguished through their microstructures, 2) Hardness and tensile strength are increased to 300hrs, degradation specimen, while elongation and reduction area are decreased to 3600hrs degradation specimen, and impact energy is decreased to 1800hrs degradation specimen, 3) The FCG rates for thermally degraded specimens are larger than that of the virgin specimen.

Fracture Mechanics Characteristics of Wheel and Axle For High Speed Train (고속철도용 차륜과 차축의 파괴역학적 특성)

  • Kwon, Seok-Jin;Seo, Jung-Won;Lee, Dong-Hyung;Ham, Young-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.28-34
    • /
    • 2010
  • Railway wheel and axle is the most critical components in railway system. A wheel and axle failure can cause a derailment with its attendant loss of life and property. The service conditions of railway vehicles have become severe in recent years due to a general increase in operating speeds. Therefore, more precise evaluate of wheelset strength and safety has been desired. Fracture mechanics characteristics such as dynamic fracture toughness, fatigue threshold and charpy impact energy with respect to the tread, plate, disc hole of wheel and the surface of press fitted axle are evaluated. This paper describes the difference of fracture toughness, fatigue crack growth and fatigue threshold at the locations of wheel and axle. The results show that the dynamic fracture toughness, $K_{ID}$, is obviously lower than static fracture toughness, $K_{IC}$ and the fracture mechanics characteristics are difference to the location of wheel tread and hole.

Determination of J-Resistance Curves of Nuclear Structural Materials by Iteration Method

  • Byun, Thak-Sang;Bong Sang lee;Yoon, Ji-Hyun;Kuk, Il-Hiun;Hong, Jun-Hwa
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.336-343
    • /
    • 1998
  • An iteration method has been developed for determining crack growth and fracture resistance cure (J-R curve) from the load versus load-line displacement record only. In this method, the hardening curve, the load versus displacement curve at a given crack length, is assumed to be a power-law function, where the exponent varies with the crack length. The exponent is determined by an iterative calculation method with the assumption that the exponent varies linearly with the load-line displacement. The proposed method was applied to the static J-R tests using compact tension(CT) specimens, a three-point bend (TPB) specimen, and a cracked round bar (CRB) specimen as well as it was applied to the quasi-dynamic J-R tests using CT specimens. The J-R curves determined by the proposed method were compared with those obtained by the conventional testing methodologies. The results showed that the J-R curves could be determined directly by the proposed iteration method with sufficient accuracy in the specimens from SA508, SA533, and SA516 pressure vessel steels and SA312 Type 347 stainless steel.

  • PDF

AN EVALUATION OF THE CRACK PROPAGATION CHARACTERISTICS OF PORCELAIN AND THE BOND STRESS OF CERAMO-METAL SYSTEM (치과용 도재의 균열전파 특성과 도재 -금속간의 응력분석)

  • Park, Ju-Mi;Bae, Tae-Sung;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.1
    • /
    • pp.47-76
    • /
    • 1994
  • This study was carried out to evaluate the effect of the crack propagation characteristics and bond stress of ceramo-metal system. In order to characterize the crack propagation, the static crack propagation stored in $37^{\circ}C$ distilled water of two commerical porcelains and the dynamic crack propagation under cyclic flexure load of ceramo-metal system were examined. In order to characterize the bond stress, the shear bond test, the 3-point flexure bond test, and the finite element stress analysis of ceramo-metal system were conducted. The results obtained were as follows : 1. Bulk densities and Young's moduli of opaque porcelains increased with repeated firing. 2. Maximum fracture toughness during 4 firing cycles showed at the group of 4 firing cycles in Ceramco porcelain and 2 firing cycles in Vita porcelain. 3. Shear bond strength and flexure bond strength of Ceramco-Verabond specimen were larger than those of Ceramco-Degudent G specimen (p<0.05). 4. Interfacial stresses under three point flexure bond test were concentrated at the edges of ceramometal system. 5. When a cyclic flexure load was applied, the crack growth rate of porcelain surface of ceramometal specimens was decreased as load cycles increased.

  • PDF

A Meshless Method Using the Local Partition of Unity for Modeling of Cohesive Cracks (점성균열 모델을 위한 국부단위분할이 적용된 무요소법)

  • Zi, Goangseup;Jung, Jin-kyu;Kim, Byeong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.861-872
    • /
    • 2006
  • The element free Galerkin method is extended by the local partition of unity method to model the cohesive cracks in two dimensional continuum. The shape function of a particle whose domain of influence is completely cut by a crack is enriched by the step enrichment function. If the domain of influence contains a crack tip inside, it is enriched by a branch enrichment function which does not have the LEFM stress singularity. The discrete equations are obtained directly from the standard Galerkin method since the enrichment is only for the displacement field, which satisfies the local partition of unity. Because only particles whose domains of influence are influenced by a crack are enriched, the system matrix is still sparse so that the increase of the computational cost is minimized. The condition for crack growth in dynamic problems is obtained from the material instability; when the acoustic tensor loses the positive definiteness, a cohesive crack is inserted to the point so as to change the continuum to a discontiuum. The crack speed is naturally obtained from the criterion. It is found that this method is more accurate and converges faster than the classical meshless methods which are based on the visibility concept. In this paper, several well-known static and dynamic problems were solved to verify the method.

Study on Fatigue Behavior and Rehabilitation of Stringer with Coped Section(I) -Experimental Study on Static and Fatigue Behavior- (절취부를 갖는 세로보의 피로거동과 보수·보강에 관한 연구(I) -정적거동 및 피로거동의 실험적 고찰-)

  • Hwang, Yoon Koog;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.363-375
    • /
    • 1997
  • This study encompasses the performance of static and fatigue test for the 8 large scale test specimens to clarify the fatigue behavior of coped stringer and the effect of the repair and strengthening on the damaged stringer of the floor system in steel railway bridges. For the purpose of the research, the actual stress wave for the existing bridge was measured, the basic stress range frequency histogram was made and the equivalent stress range was calculated. Using the result from the equivalent stress range made by adjusting the stress range, the static and fatigue test was carried out by identifying the previous rehabilitation and after. As the result of the static tests, it was revealed that the level of local stress under the S1 specimen test of the real equivalent stress range was similar to tensile strength of the test material, and it was consistent with the requirement of the initiation condition of the fatigue crack. Through the various rehabilitation methods to the damaged specimens, the effects of the repair and reinforcement were analyzed. According to the results of the repair of effect, bolting the high tension bolt over the stop hole was confirmed to be more adequate method than drilling only stop hole to delay the fatigue crack growth. Futhermore, in case of the stringer subjected by bending moment, the reinforcement over the upper flange side was determined to be a useful strengthening method, and the reinforcement to the web of the stringer was not appropriate to accomodate as a adequate strengthening method. Also it was confirmed that the category of the fatigue design for the coped stringer met with the category E specified on the fatigue design criteria of the Highway Standard Specification in Korea.

  • PDF

Development of Abutment-H pile Connection for Large Lateral Displacements of Integral Abutment Bridges (일체식 교대 교량의 대횡변위를 위한 교대와 H형 말뚝 연결부의 개발)

  • Kim, Woo Seok;Lee, Jaeha;Park, Taehyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.309-318
    • /
    • 2013
  • Abutment-to-pile connection in an integral abutment bridge is vulnerable to lateral displacement induced by thermal movement of the superstructure. However, previous researches have merely focused on the connection. In order to improve the performance of the connection, new abutment-to-pile connection designs were proposed based on quasi-static nonlinear finite element model. The reinforcement detail specified in PennDOT DM4 and HSS tube were barely effective in controlling crack growing but spiral rebar effectively performed to delay crack growth as well as absorbing energy capacity. However, it was found that delaying cracking and strengthening the connection also caused the high lateral load in superstructures. Consequently, shape of HP pile were modified to introduce plastic hinge of the HP pile for reducing the lateral load in superstructures. Connections with modified HP pile significantly prevented crack propagations under the lateral displacement.

Analysis of Acoustic Emission Signals during Long-Term Strength Tests of Brittle Materials (취성재료의 장기 강도시험 중 미소파괴음 신호 분석)

  • Cheon, Dae-Sung;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.121-131
    • /
    • 2017
  • We studied the time-dependent behaviors of rock and concrete materials by conducting the static and dynamic long-term strength tests. In particular, acoustic emission(AE) signals generated while the tests were analyzed and used for the long-term stability evaluation. In the static subcritical crack growth test, the long-term behavior and AE characteristics of Mode I and Mode II were investigated. In the dynamic long-term strength test, the fatigue limit and characteristics of generation of AE were analyzed through cyclic four points bending test. The graph of the cumulative AE hits versus time showed a shape similar to that of the creep curve with the first, second and third stages. The possibility for evaluating the static and dynamic long-term stability of rock and concrete is presented from the log - log relationship between the slope of the secondary stage of cumulative AE hits curve and the delayed failure time.

Deduction On Fatigue Strength of Two Span Continuous Beams with Steel Fibrous (강섬유를 혼입한 2경간 연속보의 피로강도 추정)

  • 곽계환;곽경헌;정태영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.359-364
    • /
    • 2001
  • Recently structural damage has been frequently observed in reinforced concrete bridges due to repeted ioads such as vehicular traffic and due to continual overloads by heavy trucks. Therefore. In this study, the static tests and the fatigue tests were performed on a series of SFRC(steel fibrous reinforced concrete) to investigate the fatigue behavior of SFRC varying with the steel fibrous contents. Through this test, the diagonal cracking loads, ultimate loads, deflections, strains of concrete and steel. On this basis, the crack growth and failure of SFRC beams were studied, and a model for S-N relationship of SFRC was proposed.

  • PDF

Fatigue Analysis to Determine the Repair Limit for the Damaged Fastener Hole of Aging Aircraft(P-3CK) (노후항공기(P-3CK) 패스너 홀 손상 수리 한계 설정을 위한 피로해석)

  • Kim, Young-Jin;Kim, Hyeung-Geun;Kim, Chang-Young;Chang, Joong-Jin;Lee, Mal-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.12
    • /
    • pp.959-966
    • /
    • 2013
  • In this study, based on P-3CK project using aging aircraft without any design information, the structural assessments of fastener holes to repair the short edge distance defects are investigated. For this purpose, the nacelle longeron which has many defects is selected and then conservative stress is calculated by performing the static analysis of 1.5ED, 1.8ED, 2.0ED defects of longeron fastener holes. This result applies to TWIST standard load spectrum to generate flight load spectrum. Then the crack growth analysis is performed by using flight load spectrum. Through this, the validity of a repaired fastener hole is evaluated. Finally, the standard of repair and the period of maintenance for a defected fastener hole are established.