• Title/Summary/Keyword: Static contact angle

Search Result 96, Processing Time 0.023 seconds

Proposed Approaches on Durability Enhancement of Small Structure fabricated on Camera Lens Surface (카메라 렌즈 표면에 형성된 미세 패턴의 내구성 향상 기법 제안)

  • Park, Hong Ju;Choi, In Beom;Kim, Doo-In;Jeong, Myung Yung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.467-473
    • /
    • 2019
  • In this study, approached to improve durability of the multi-functional nano-pattern fabricated on the curved lens surface using nanoimprint lithography (NIL) was proposed, and the effects of the proposed methods on functionality after wear test were examined. To improve the mechanical property of ultraviolet(UV)-curable resin, UV-NIL was conducted at the elevated temperature around $60^{\circ}C$. In addition, micro/nano hierarchical structures was fabricated on the lens surface with a durable film mold. Analysis on the worn surfaces of nano-hole pattern and hierarchical structures and measurements on the static water contact angle and critical water volume for roll-off indicated that the UV curing process with elevated temperature is effective to maintain wettability by increasing hardness of resin. Also, it was found that the micro-scale pattern is effective to protect nano-pattern from damage during wear test.

A Study on the Wetting Properties of UBM-coated Si-wafer (UBM(Under Bump Metallurgy)이 단면 증착된 Si-wafer의 젖음성에 관한 연구)

  • 홍순민;박재용;박창배;정재필;강춘식
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.55-62
    • /
    • 2000
  • The wetting balance test was performed in an attempt to estimate the wetting properties of the UBM-coated Si-wafer on one side to the Sn-Pb solder. The wetting curves of the one and both side-coated UBM layers had the similar shape and the parameters characterizing the curve shape showed the similar transition tendency to the temperature. The wetting property estimation was possible with the new wettability indices from the wetting curves of one side-coated specimen; $F_{min}$, $F_{s}t_{s}$ and $t_s$. For UBM of Si-chip, Au/Cu/Cr UBM was better than Au/Ni/Ti in the point of wetting time. The contact angle of the one side coated Si-plate to the Sn-Pb solder could be calculated from the force balance equation by measuring the static state force and the tilt angle.

  • PDF

LC Orientation Characteristics of NLC on Polyimide Surface According to Ion-beam Irradiation Angles (이온빔 조사각도에 따른 네마틱 액정의 액정 배향 특성)

  • Lee, Kang-Min;Oh, Byeong-Yun;Park, Hong-Gyu;Lim, Ji-Hun;Lee, Won-Kyu;Na, Hyun-Jae;Kim, Byoung-Yong;Han, Jeong-Min;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.329-329
    • /
    • 2008
  • To date, rubbing has been widely used to align LC molecules uniformly. Although rubbing can be simple, it has fundamental problems such as the generation of defects by dust and static electricity, and difficulty in achieving a uniform LC alignment on a large substrate. Therefore, noncontact alignment has been investigated. Ion beam induced alignment method, which provides controllability, nonstop process, and high resolution display. In this study, we investigated liquid crystal (LC) alignment with ion beam (IB) that non contact alignment technique on polyimide and electro-optical characteristics of twisted nematic (TN)-liquid crystal display (LCD) on the poly imide under various ion beam angles. In this experiment, Polyimide layer was coated on glass by spin-coating and Voltage-transmittance(VT) and response time characteristics of the TN cell were measured by a LCD evaluation system. The good characteristics of the nematic liquid crystal (NLC) alignment with the ion beam exposure poly imide surface was observed. The tilt angle of NLC on the PI surface with ion beam exposure can be measured under $1^{\circ}4 for all of irradiation angles. In addition, it can be achieved the good ED properties, and residual DC property of the ion beam aligned TN cell on polyimide surface.

  • PDF

Reinforcement, Thermal and Fire Retardant Improvement of Phenolic Composites by Surface Treatment of CFRP Chip (CFRP Chip 표면처리에 따른 페놀복합재료의 강화, 내열성 및 난연성 향상)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Gu, Ga-Young;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.13 no.2
    • /
    • pp.58-63
    • /
    • 2012
  • CFRP chip is the byproduct from carbon fiber reinforced plastic (CFRP) processing. CFRP chip is not simply a waste mainly composed of fine carbon fiber and epoxy resin. CFRP chip keeps matrix to maximize their reinforcing effect. To obtain a uniform length of carbon fiber in CFRP chip, chip was chopped ina mortar. CFRP chip should be purified to get better interface adhesion. Epoxy resin on the carbon fiber was removed by $H_2O_2$ surface etching treatment. Optimal dispersion and fabrication conditions of CFRP chip embedded in phenolic resin were determined by thermal stability for fire retardant applications. CFRP chip-phenolic composite exhibits better mechanical and thermal properties than neat phenolic resin. Surface condition of CFRP chip-phenolic composite was evaluated by static contact angle measurement. Contact angle of CFRP chip-phenolic composite was greater than neat phenolic due to heterogeneous condition of fine carbon fibers. From the evaluation for fire retardant (ASTM D635-06) test, thermal stability of CFRP chip-phenolic composite was found to be improved with higher concentration of CFRP chip.

Improvement of Interfacial Adhesion of Plasma Treated Single Carbon Fiber Reinforced CNT-Phenolic Nanocomposites by Electrical Resistance Measurement and Wettability (젖음성 및 전기저항 측정을 이용한 플라즈마 처리된 단일 탄소섬유 강화 탄소나노튜브-페놀수지 나노복합재료의 계면접착력 향상)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Jong-Kyoo;Lee, Woo-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.12 no.3
    • /
    • pp.88-93
    • /
    • 2011
  • Optimal dispersion and fabrication conditions of carbon nanotube (CNT) embedded in phenolic resin were determined by electrical resistance measurement; and interfacial property was investigated between plasma treated carbon fiber and CNT-phenolic composites by electro-micromechanical techniques. Wettability of carbon fiber was improved significantly after plasma treatment. Surface energies of carbon fiber and CNT-phenolic nanocomposites were measured using Wilhelmy plate technique. Since surface activation of carbon fiber, the advancing contact angle decreased from $65^{\circ}$ to $28^{\circ}$ after plasma treatment. It was consistent with static contact angle results of carbon fiber. Work of adhesion between plasma treated carbon fiber and CNT-phenolic nanocomposites was higher than that without modification. The interfacial shear strength (IFSS) and apparent modulus also increased with plasma treatment of carbon fiber.

Rear Drum Brake Grunt(stick-slip) Noise Improvement on Braking During Nose-dive & Return Condition (제동시 발생하는 리어 드럼브레이크 Grunt(stick-slip) Noise 개선)

  • Hong, Ilmin;Jang, Myunghoon;Kim, Sunho;Choi, Hongseok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.781-788
    • /
    • 2013
  • Grunt(stick-slip) noise happens between rear lining and drum on braking condition while vehicle is returning to steady position after nose-dive. The study presents a new testing and analysis methods for improving brake grunt noise on vehicle. Grunt noise is called a kind of stick slip noise with below 1 kHz frequency that is caused by the surfaces alternating between sticking to each other and sliding over each other with a corresponding change in friction force. This noise is typically come from that the static friction coefficient of surfaces is much higher than the kinetic friction coefficient. For the identification of the excitation mechanism and improvement of grunt noise, it is necessary to study variable parameters of rear drum brake systems on vehicle and to implement CAE analysis with stick slip model of drum brake. The aim of this study has been to find solution parameters throughout test result on vehicle and dynamo test. As a result of this study, it is generated from stick slip between rear lining and rear drum and it can be solved to reduce contact angle of lining with asymmetric and is effected not only brake drum strength but also rear brake size and brake factor.

Analysis of Degradation of Durability of the GDL with Various MPL Penetration Levels (MPL 침투깊이에 따른 GDL 내구성능 저하 특성 분석에 관한 연구)

  • Park, Jaeman;Cho, Junhyun;Ha, Taehun;Min, Kyoungdoug;Lee, Eunsook;Jyoung, Jy-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.77.1-77.1
    • /
    • 2010
  • Durability problems of gas diffusion layer(GDL) is one of the important issues for accomplishing commercialization of proton exchange membrane fuel cell(PEMFC). GDL is strongly related to the performance of PEMFC because one of the main function of GDL is to work as a path of fuel, air and water. When the GDL is degraded, it causes water balance problems such as the flooding phenomenon. Thus, investigating the durability characteristics of the GDL is important and understanding the GDL degradation process is needed. In this study, the GDLs are degraded by carbon corrosion stress method which is the electrochemical degradation mode. To determine the effects of carbon corrosion of the GDL, 1.45 V of potential is imposed for 96 hours. In this manner, in the previous research, the structure between the substrate and the MPL is weaken. Further investigations are needed to clarify this phenomenon. Therefore, in this study, the carbon corrosion stress method is carried out with GDLs which have various MPL penetration levels and the effects of the MPL penetration level on the characteristics change of the GDL are analyzed. The changes in characteristics are measured with various properties of GDL such as weight, thickness and static contact angle. The degraded GDL shows loss of their properties.

  • PDF

Rear drum brake grunt (stick-slip) noise improvement on braking during nose-dive & return condition (제동시 발생하는 리어 드럼브레이크 grunt (stick-slip) noise 개선)

  • Hong, Ilmin;Jang, Myunghoon;Kim, Sunho;Choi, Hongseok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.743-749
    • /
    • 2012
  • Grunt (Stick-slip) noise happens between rear lining and drum on braking condition while vehicle is returning to steady position after nose-dive. The study presents a new testing and analysis methods for improving brake grunt noise on vehicle. Grunt noise is called a kind of stick slip noise with below 1kHz frequency that is caused by the surfaces alternating between sticking to each other and sliding over each other with a corresponding change in friction force. This noise is typically come from that the static friction coefficient of surfaces is much higher than the kinetic friction coefficient. For the identification of the excitation mechanism and improvement of grunt noise, it is necessary to study variable parameters of rear drum brake systems on vehicle and to implement CAE analysis with stick slip model of drum brake. The aim of this study has been to find solution parameters throughout test result on vehicle and dynamo test. As a result of this study, it is generated from stick slip between rear lining and rear drum and it can be solved to reduce contact angle of lining with asymmetric and is effected not only brake drum strength but also rear brake size and brake factor.

  • PDF

Interfacial Durability and Electrical Properties of CNT or ITO/PVDF Nanocomposites for Self-Sensor and Micro Actuator (자체-센서와 미세 작동기를 위한 CNT/PVDF 및 ITO/PVDF 나노복합재료의 전기적 및 계면 내구성 비교 평가)

  • Gu, Ga-Young;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.12-17
    • /
    • 2011
  • Interfacial durability and electrical properties of CNT or ITO coated PVDF nanocomposites were investigated for self-sensor and micro actuator applications. Electrical resistivity of nanocomposites for the durability on interfacial adhesion was measured using four points method via fatigue test under cyclic loading. CNT/PVDF nanocomposite exhibited lower electrical resistivity and good self-sensing performance due to inherent electrical property. Durability on the interfacial adhesion was good for both CNT and ITO/PVDF nanocomposites. With static contact angle measurement, surface energy, work of adhesion, and spreading coefficient between either CNT or ITO and PVDF were obtained to verify the correlation with interfacial adhesion durability. The optimum actuation performance of CNT or ITO coated PVDF specimen was measured by the displacement change using laser displacement sensor with changing frequency and voltage. The displacement of actuated nanocomposites decreased with increasing frequency, whereas the displacement increased with voltage increment. Due to nanostructure and inherent electrical properties, CNT/PVDF nanocomposite exhibited better performance as self-sensor and micro actuator than ITO/PVDF case.

Interfacial Durability and Acoustic Properties of Transparent xGnP/PVDF/xGnP Graphite Composites Film for Acoustic Actuator (음향 작동기를 위한 투명한 xGnP/PVDF/xGnP 그래핀 복합재료 필름의 계면 내구성 및 음향 특성)

  • Gu, Ga-Young;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.25 no.3
    • /
    • pp.70-75
    • /
    • 2012
  • Interfacial durability and electrical properties of CNT, ITO or xGnP coated PVDF nanocomposites were investigated for acoustic actuator applications. The xGnP coated PVDF nanocomposite exhibited better electrical conductivity than CNT and ITO case due to the unique electrical property of xGnP, and this nanocomposite also showed good sound characteristics. Interfacial adhesion durability between either neat CNT or plasma treated CNT and plasma treated PVDF were measured by static contact angle, surface energy, work of adhesion, and spreading coefficient tests. The optimum acoustic actuation performance of xGnP coated PVDF nanocomposite was measured using sound level meter with changing radius of curvature and coating conditions. As compared to CNT and ITO, the xGnP was known as more appropriate acoustic actuator due to the characteristic electrical property. It is the most appropriate condition when the radius of curvature is 15 degree. Although sound characteristics were different with various coating thicknesses, it is possible to manufacture transparent actuator with good sound quality.