Browse > Article
http://dx.doi.org/10.17702/jai.2012.13.2.058

Reinforcement, Thermal and Fire Retardant Improvement of Phenolic Composites by Surface Treatment of CFRP Chip  

Kwon, Dong-Jun (School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University)
Wang, Zuo-Jia (School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University)
Gu, Ga-Young (School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University)
Park, Joung-Man (School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University)
Publication Information
Journal of Adhesion and Interface / v.13, no.2, 2012 , pp. 58-63 More about this Journal
Abstract
CFRP chip is the byproduct from carbon fiber reinforced plastic (CFRP) processing. CFRP chip is not simply a waste mainly composed of fine carbon fiber and epoxy resin. CFRP chip keeps matrix to maximize their reinforcing effect. To obtain a uniform length of carbon fiber in CFRP chip, chip was chopped ina mortar. CFRP chip should be purified to get better interface adhesion. Epoxy resin on the carbon fiber was removed by $H_2O_2$ surface etching treatment. Optimal dispersion and fabrication conditions of CFRP chip embedded in phenolic resin were determined by thermal stability for fire retardant applications. CFRP chip-phenolic composite exhibits better mechanical and thermal properties than neat phenolic resin. Surface condition of CFRP chip-phenolic composite was evaluated by static contact angle measurement. Contact angle of CFRP chip-phenolic composite was greater than neat phenolic due to heterogeneous condition of fine carbon fibers. From the evaluation for fire retardant (ASTM D635-06) test, thermal stability of CFRP chip-phenolic composite was found to be improved with higher concentration of CFRP chip.
Keywords
CFRP; phenolic composite; reinforcing effect; thermal stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Shyha, S. L. Soo, D. Aspinwall, and S. Bradley, J. Mater. Process. Technol., 210, 1023 (2010).   DOI
2 J. Liu, D. Zhang, L. Qin, and L. Yan, Int. J. Machine Tools &Manufacture, 53, 141 (2012).   DOI
3 S. Pimenta, S. T. Pinho, P. Robinson, K. H. Wong, and S. J. Pickering, Compos. Sci. Technol., 70, 1713 (2010).   DOI
4 S. Pimenta and S. T. Pinho, Waste Manage., 31, 378 (2011).   DOI
5 Y. Hu, S. N. Li, H. Ma, M. Shi, B. Yan, W. Huang, W. Wang, and M. Ye, Compos. Sci. Technol., 70, 2176 (2010).   DOI
6 C. T. Hsieh, J. M. Chen, Y. H. Huang, R. R. Kou, C. T. Lee, and H. C. Shih, J. Vac. Sci. Technol. B, 24, 113 (2006).   DOI
7 K. Noda, A. Takahara, and T. Kajiyama, Polymer, 42, 5803 (2001).   DOI
8 S. J. Park and Y. S. Jang, J. Colloid Interface Sci., 237, 91 (2001).   DOI
9 M. H. Choi, B. H. Jeon, and I. J. Chung, Polymer, 41, 3243 (2000).   DOI
10 Z. J. Wang, N. J. R. Gnidakoung, M. S. Kim, J. M. Park, and M. G. Um, J Adhesion and Interface, 10, 162 (2009).
11 I. T. Amr, A. A. Amer, S. Thomas, M. A. Hathi, S. A. Girei, R. Sougrat, and M. A. Atiech, Composites Part B: Engineering, 42, 1554 (2011).   DOI
12 J. M. Park, Z. J. Wang, J. H. Jang, N. J. R. Gnidakoung, W. I. Lee, J. G. Park, and K. L. DeVries, Composites: Part A, 40, 1722 (2009).   DOI
13 R. P. Hernanz, J. G. serna, C. Dodds, J. hyde, M. Poliakoff, M. J. Cocero, S. Kingman, S. Pickering, and E. Lester, J. Supercrit. Fluids, 48, 83 (2008).