• Title/Summary/Keyword: Static behavior

Search Result 1,865, Processing Time 0.023 seconds

3-Node Relaxed-Equiribrium Hybrid-Mixed Curved Beam Elements (완화된 평형조건을 만족하는 응력함수를 가지는 3절점 혼합 곡선보요소)

  • Kim, Jin-Gon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.153-160
    • /
    • 2008
  • In this study, we propose a new three-node hybrid-mixed curved beam element with the relaxed-equiribrium stress functions for static analysis. The proposed element considering shear deformation is based on the Hellinger-Reissner variational principle. The stress functions are carefully chosen from three important considerations: (i) all the kinematic deformation modes must be suppressed, and (ii) the spurious constraints must be removed in the limiting behaviors via the field-consistency, and (iii) the relaxed equilibrium conditions could be incorporated because it might be impossible to select the stress functions and parameters to fully satisfy both the equiribrium conditions and the suppression of kinematic deformation modes in the three-node curved beam hybrid-mixed formulation. Numerical examples confirm the superior and stable behavior of the proposed element regardless of slenderness ratio and curvature. Besides, the proposed element shows the outstanding performance in predicting the stress resultant distributions.

Development of an Analysis Model for UPS System of LNG Receiving Terminal Facilities (천연가스 생산기지 내 UPS시스템의 해석모델 개발)

  • Kook, Seung-Kyu;Hong, Seong-Kyeong;Kim, Joon-Ho;Choi, Won-Mog;Park, Young-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.539-545
    • /
    • 2016
  • UPS system in the liquefied natural gas(LNG) receiving terminal is one of the fundamental equipment that need to sustain operation during earthquake. In this study, modal identification test of UPS system was performed based on IEEE Std. 693-2005 and natural frequencies and modal damping, mode shapes had been identified. In addition, tri-axial time history test was performed to check the behavior and stress of the equipment during earthquake. Eigenvalue analysis was performed and analysis model was modified by reflecting the results of the test. Static analysis by dead weight and response spectrum analysis were performed to compare the combined stresses with the stress results of test. Dynamic characteristics and combined stresses under seismic load condition of the improved analysis model were similar to the test results and in this regard the compatibility was proved.

Analytical Model for Post Tension Flat Plate Frames (포스트 텐션 플랫 플레이트 골조의 해석모델)

  • Han, Sang-Whan;Ryu, Jong-Hyuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.23-32
    • /
    • 2007
  • This study developed an analytical model for predicting nonlinear behavior of PT flat plate frames having slab-column connections with and without slab bottom reinforcement passing through the column. The developed model can predict the failure sequence until punching failure occurs. For verifying the analytical model, the test results of PT flat plate slab-column connections were compared with the results of the analysis. Moreover, the results of static pushover test and shaking table test of 2 story PT flat plate frame were compared with analysis results. For evaluating seismic performance of PT flat plate frame, this study conducted nonlinear response history analysis of the 2 story PT flat plate frame with and without slab bottom reinforcement passing through the column under 1940 El Centro ground motion scaled to have pseudo spectral acceleration of 0.3, 0.5, and 0.7g at the fundamental period of the frame. This study observed that as ground motion is more intense, seismic demands for the frame having the connections without slab bottom reinforcement passing through the column are larger than those without slab bottom reinforcement.

An Efficient Structural Analysis of Multistory Buildings (고층건물의 효율적인 구조해석)

  • Kim, Kyeong Ho;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.141-153
    • /
    • 1987
  • The prediction of the exact behavior of multistory building is one of the most complicated problem encountered in structural engineering practice. An efficient computer method for the three dimensional analysis of building structures is presented in this paper. A multistory building is idealized as an assemblage of a series of rectangular plane frames interconnected by rigid floor diaphragms. The matrix condensation technique is employed for the reduction of degrees of freedom, which results in a significant saving in computational efforts and the required memory size. Kinematical approach was used to assemble condensed stiffness matrices of plane frames into a three dimensional stick model stiffness matrix. The static analysis follows the modified tridiagonal approach. Since this procedure utilizes the condensed stiffness matrix of the structure, the dynamic equations of motion for the story displacement are developed by assigning proper mass for each story. Analysis results of several example structures are compared to those obtained by using the well-known SAP IV for verification of the accuracy and efficiency of the computer program PFS which was developed utilizing the method proposed in this study. The analysis method proposed in this study can be used as an efficient and economical means for the analysis of multistory buildings.

  • PDF

Experimental modal analysis of transverse-cracked rails-influence of the cracks on the real track behavior

  • Domingo, Laura Montalban;Giner, Beatriz Baydal;Martin, Clara Zamorano;Herraiz, Julia I. Real
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.1019-1032
    • /
    • 2014
  • Rails are key elements in railway superstructure since these elements receive directly the train load transmitted by the wheels. Simultaneously, rails must provide effective stress transference to the rest of the track elements. This track element often deteriorates as a consequence of the vehicle passing or manufacturing imperfections that cause in rail several defects. Among these rail defects, transverse cracks highlights and are considered a severe pathology because they can suddenly trigger the rail failure. This study is focused on UIC-60 rails with transverse cracks. A 3-D FEM model is developed in ANSYS for the flawless rail in which conditions simulating the crack presence are implemented. To account for the inertia loss of the rail as a consequence of the cracking, a reduction of the bending stiffness of the rail is considered. The numerical models have been calibrated using the first four bending vibration modes in terms of frequencies. These vibration frequencies have been obtained using the Experimental Modal Analysis technique, studying the changes in the modal parameters of the rails induced by the crack and comparing the results obtained by the model with experimental results. Finally, the calibrated and validated models for the single rail have been implemented in a complete railway ballasted track FEM model in order to study the static influence of the cracks on the rail deflection caused by a load passing.

Dynamic combination resonance characteristics of doubly curved panels subjected to non-uniform tensile edge loading with damping

  • Udar, Ratnakar. S.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.481-500
    • /
    • 2007
  • The dynamic instability of doubly curved panels, subjected to non-uniform tensile in-plane harmonic edge loading $P(t)=P_s+P_d\;{\cos}{\Omega}t$ is investigated. The present work deals with the problem of the occurrence of combination resonances in contrast to simple resonances in parametrically excited doubly curved panels. Analytical expressions for the instability regions are obtained at ${\Omega}={\omega}_m+{\omega}_n$, (${\Omega}$ is the excitation frequency and ${\omega}_m$ and ${\omega}_n$ are the natural frequencies of the system) by using the method of multiple scales. It is shown that, besides the principal instability region at ${\Omega}=2{\omega}_1$, where ${\omega}_1$ is the fundamental frequency, other cases of ${\Omega}={\omega}_m+{\omega}_n$, related to other modes, can be of major importance and yield a significantly enlarged instability region. The effects of edge loading, curvature, damping and the static load factor on dynamic instability behavior of simply supported doubly curved panels are studied. The results show that under localized edge loading, combination resonance zones are as important as simple resonance zones. The effects of damping show that there is a finite critical value of the dynamic load factor for each instability region below which the curved panels cannot become dynamically unstable. This example of simultaneous excitation of two modes, each oscillating steadily at its own natural frequency, may be of considerable interest in vibration testing of actual structures.

Determination of Strain Energy Function of Rubber Materials Considering Stress Softening Behavior (응력연화거동을 고려한 고무 재료의 변형률 에너지 함수 결정)

  • Kim, W.S.;Hong, S.I.
    • Elastomers and Composites
    • /
    • v.42 no.3
    • /
    • pp.168-176
    • /
    • 2007
  • When the rubber vulcanizates reinforced with carbon black or silica are subjected to cyclic loading from its virgin state, the stress required on reloading is less than that on the initial loading. This stress softening phenomenon is referred to as the Mullins effect. The strain energy function of rubber vulcanizates was investigated using theory of pseudo-elasticity incorporated damage parameter that Ogden and Roxburgh have proposed to describe the damage-induced stress softening effect in rubber-like solids. The quasi-static cyclic loading test was performed using the NR-SBR vulcanizates reinforced with carbon black, and then the effect of a damage parameter to stress-strain curve in reloading and subsequent reloading paths was studied. The strain energy function of the rubber vulcanizates with a different filler content was also evaluated.

Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay

  • Yu, Su Young;Choi, Han Suk;Lee, Seung Keon;Park, Kyu-Sik;Kim, Do Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.227-243
    • /
    • 2015
  • In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear parameters of soil models was investigated by Dynamic Embedment Factor (DEF) concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.

Dynamic Value Chain Modeling of Knowledge Management (지식경영의 동태적 가치사슬 모형 구축)

  • Lee, Young-Chan
    • The Journal of Information Systems
    • /
    • v.17 no.3
    • /
    • pp.205-233
    • /
    • 2008
  • This study suggests the dynamic value chain model, that will be able to not only show changing processes to organization's significant capital by integrating an individual, implicit, and explicit knowledge which affect organizational decision making, but also distinguish the key driver for raising organizational competitive power because it makes possible to analyze sensitivity of performance along with decision making alternatives and policy changes from dynamic view by connecting knowledge management capability, knowledge management activity, and relations with organizational performance with specific strategic map. Recently, a lot of organizations show interest in measuring and evaluating their performance synthetically. In organizations taking knowledge management, they introduce effective value chain model like a dynamic balanced scorecard (DBSC), and therefore they can reflect their knowledge management condition as well as show their changes by checking performance of established vision and strategy periodically. Furthermore, they can ask for their inner members' understanding and participation by communicating with and inspiring their members with awareness that members are one of their group, present a base of benchmarking, and offer significant information for later decision making. The BSC has been a successful framework for measuring an organization's performance in various perspectives through translating an organization's vision and strategy into an interrelated set of key performance indicators and specific actions. The BSC, while having significant strengths over traditional performance measurement methods, however, has its own limitations, due to its static nature, such as overlooking two-way causation between performance indicators and neglecting the impact of delayed feedback flowing from the adoption of new strategies or policy changes. To overcome these limitations, this study employs SD, a methodology for understanding complex systems where dynamic feedback among the interrelated system components significantly impact on the system outcomes. The SD simulation model in the form of DBSC would serve as a useful strategic teaming tool for facilitating an organization's communication process through various scenario analyses as well as predicting the dynamic behavior pattern of their key performance measures over a future time frame. For the demonstration purpose, this study applied the DBSC model to Prototype of Korea manufacturing and service firm.

Seismic Performance Evaluation of Steel Moment Frames in Korea Using Nonlinear Dynamic Analysis (비선형동적해석을 통한 국내 철골 모멘트골조의 내진성능 평가)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • Domestic steel moment resisting frames were designed in accordance with the former KBC2005 and the current KBC2009, and then their seismic performance was evaluated in accordance with FEMA355F by utilizing nonlinear dynamic analysis. The results from the procedure in FEMA355F were different with those from the capacity spectrum method utilizing nonlinear static push-over analysis. In particular, the domestic steel moment resisting frames have a weak panel zone, so their behavior can be estimated more precisely by nonlinear dynamic analysis. The domestic steel moment resisting frames satisfied the performance goal if located at a site class $S_B$ or $S_C$, regardless of the story number and the response modification factor. However, if they are located at a site class $S_D$ or $S_E$, performance goal satisfaction cannot be guaranteed. No matter what standard is used for the design, KBC2005 or KBC2009, the domestic steel moment resisting frames may possess satisfactory seismic performance if the site condition is relatively good.