• 제목/요약/키워드: Static and Dynamic Behavior

검색결과 722건 처리시간 0.032초

Research on static and dynamic behaviors of PC track beam for straddle monorail transit system

  • Yang, Yongqing;Yang, Deng;Gou, Hongye;Bao, Yi
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.437-452
    • /
    • 2019
  • In this study, in-situ static and dynamic tests of four pre-stressed concrete (PC) track beams with different span lengths and curvatures in a straddle monorail transit system were reported. In the static load tests, the strain and deflection at critical sections of the PC track beams were measured to determine the load bearing capacity and stiffness. The dynamic responses of strain, deflection, acceleration, and displacement at key positions of the PC track beams were measured under different train speeds and train loads to systematically study the dynamic behaviors of the PC track beams. A three-dimensional finite element model of the track beam-vehicle coupled vibration system was established to help understand the dynamic behavior of the system, and the model was verified using the test results. The research results show that the curvature, span length, train speed, and train loads have significant influence on the dynamic responses of the PC track beams. The dynamic performance of the PC track beams in the curve section is susceptible to dynamic loads. Appropriate train loads can effectively reduce the impact of the train on the PC track beam. The PC track beams allow good riding comfort.

양각 거더교의 정적·동적특성에 관한 연구 (A Study on the Static and Dynamic Characteristics of Raised Girder Bridges)

  • 이지연;김성;박승진
    • 한국재난정보학회 논문집
    • /
    • 제19권4호
    • /
    • pp.851-858
    • /
    • 2023
  • 연구목적: 종래의 PSC 거더에 비해 단면 효율이 개선된 양각 거더교의 구조적 안전성을 확보하기 위한 연구를 수행하였다. 이를 위해 거더 길이, 높이, 폭과 같은 단면의 제원을 정하고 강연선의 배치를 설계하여 정적 및 동적 하중에 의한 양각 거더의 실질적인 성능을 검증하였다. 연구방법: 정적 성능 실험은 1차 및 2차 정적 하중에 대한 처짐, 균열 등의 거동 응답을 측정하여 사용성 한계상태를 검토하였다. 또한, 동적 하중 재하 실험은 시간에 따른 가속도, 변위 거동 응답을 측정하여 고유진동수 및 감쇠비를 산정하여 사용성 한계상태를 검토하였다. 연구결과: 정적 성능 실험 결과 최대 재하하중 기준 처짐값은 안정적인 거동을 나타났고, 최대 재하하중 수준에서 측정된 균열폭은 매우 작아서 사용성 한계상태를 만족하는 것으로 나타났다. 또한, 동적 하중 재하 실험 설계 시 산정된 고유진동수를 상회하는 고유진동수가 나타났으며, 현행 규정에 만족하는 감쇠비를 확보하는 것으로 나타났다.

Static and dynamic finite element analysis of honeycomb sandwich structures

  • Triplett, Matt H.;Schonberg, William P.
    • Structural Engineering and Mechanics
    • /
    • 제6권1호
    • /
    • pp.95-113
    • /
    • 1998
  • The extensive use of honeycomb sandwich structures has led to the need to understand and analyze their low velocity impact response. Commercially available finite element software provides a possible analysis tool for this type of problem, but the validity of their material properties models for honeycomb materials must be investigated. Three different problems that focus on the effect of differences in honeycomb material properties on static and dynamic response are presented and discussed. The first problem considered is a linear elastic static analysis of honeycomb sandwich beams. The second is a nonlinear elastic-plastic analysis of a circular honeycomb sandwich plate. The final problem is a dynamic analysis of circular honeycomb sandwich plates impacted by low velocity projectiles. Results are obtained using the ABAQUS final element code and compared against experimental results. The comparison indicates that currently available material properties models for honeycomb materials can be used to obtain a good approximation of the behavior of honeycomb sandwich structures under static and dynamic loading conditions.

DGPS 기법을 이용한 자정식 현수교의 정동적 변위응답 측정 및 분석 (Application of Differential GPS for the Displacement Measurement of Self-anchored Suspension Bridge under the Static and Dynamic Loading Cases)

  • 김형태;서주원
    • 한국소음진동공학회논문집
    • /
    • 제19권11호
    • /
    • pp.1126-1132
    • /
    • 2009
  • Bridge structures are designed to support ordinary loadings such as vehicles, wind, temperature and current as well as unexpected loadings like earthquakes and storm. Especially, the displacement of Flexible bridges like an suspension bridge under ordinary loading conditions is necessary to be monitored. In case of long span bridges, there are some difficulties in monitoring the displacement of center of the main span using traditional laser displacement sensors. In this study, the static and dynamic displacement responses due to vehicle loadings were measured by DGPS(differential global positioning system) technique. The displacement response data were compared with data obtained from traditional laser displacement sensors so that the static and dynamic behavior of the bridge under vehicle loadings was examined and the applicability of the displacement response measurement using DGPS technique was verified. The static and dynamic loading test for an self-anchored suspension bridge, So-rok Bridge, was performed using vehicles. The displacement response from DGPS technique and that from laser displacement sensors of the bridge monitoring system were compared. The amplitude of white noise from DGPS based measurement was about 7 mm and that of laser displacement sensor based measurement was about 3 mm. On the other hand, dynamic behavior of the center of main span from DGPS based measurement showed better agreement with influence line of the bridge than that from laser displacement sensors. In addition, there were some irregular and discontinuous variation of data due to the instability of GPS receivers or frequent appearance of GPS satellites. Post-processing via the reference station close to an observation post provided by NGII(National Geographic Information Institute) will be a counter-plan for these defects.

Post-buckling analysis of sandwich FG porous cylindrical shells with a viscoelastic core

  • Foroutan, Kamran;Dai, Liming
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.349-367
    • /
    • 2022
  • In this research, an approach combining a semi-analytical method and an analytical method is presented to investigate the static and dynamic post-buckling behavior of the sandwich functionally graded (FG) porous cylindrical shells exposed to external pressure. The sandwich cylindrical shell considered is composed of a viscoelastic core and two FG porous (FGP) face layers. The viscoelastic core is made of Kelvin-Voigt-type material. The material properties of the FG porous face layer are considered continuous through each face thickness according to a porosity coefficient and a volume fraction index. Two types of sandwich FG porous viscoelastic cylindrical shells named Type A and Type B are considered in the research. Type A shell has the porosity evenly distributed across the thickness direction, and Type B has the porosity unevenly distributes across the thickness direction. The FG face layers are considered in two cases: outside metal surface, inside ceramic surface (OMS-ICS), and inside metal surface, outside ceramic surface (IMS-OCS). According to Donnell shell theory, von-Karman equation, and Galerkin's method, a discretized nonlinear governing equation is derived for analyzing the behavior of the shells. The explicit expressions for static and dynamic critical buckling loading are thus developed. To study the dynamic buckling of the shells, the governing equation is examined via a numerical approach implementing the fourth-order Runge-Kutta method. With a procedure presented by Budiansky-Roth, the critical load for dynamic post-buckling is obtained. The effects of various parameters, such as material and geometrical parameters, on the post-buckling behaviors are investigated.

굴삭기의 정적/동적 강도 해석법에 대한 연구 (Study on the Static and Dynamic Structural Analysis Procedure of Excavators)

  • 정준모;김규성;장영식;최익흥;허민수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.537-543
    • /
    • 2003
  • This paper presents the improved procedure to assess static and dynamic strength of crawler type excavators. A fully integrated model including front attachment and chassis was prepared for structural analysis. In this paper, two types of loading input methods were investigated and the method imposing digging force directly on bucket tooth was more convenient than imposing cylinder reaction force on cylinder pin even if the two methods showed no discrepancy in analysis results. Static strength analysis was carried out for eight analysis scenarios based on two extreme digging positions, maximum digging reach position and maximum digging force positions. The results from static strength analysis were compared with measured stresses, cylinder pressures and digging forces and showed a good quantitative agreement with measured data. Dynamic strength analysis was carried out for simple reciprocation of boom cylinders. It was recognized that the effect of compressive stiffness of hydraulic oil was very important for dynamic structural behavior. The results from dynamic strength analysis including hydraulic oil stiffness were also compared with measured acceleration data and showed a qualitative agreement with measured data.

  • PDF

분자동역학을 이용한 다양한 구조물 위의 수액적의 특성에 대한 연구 (A Study of Characteristics of Water Droplets on Various Nanoscale Structures Using Molecular Dynamics)

  • 이광호;권태우;하만영
    • 설비공학논문집
    • /
    • 제30권1호
    • /
    • pp.33-43
    • /
    • 2018
  • This study numerically investigated statistic and dynamic behaviors of the water droplet on plate with or without various structured-pillars at nano-scale by molecular dynamics simulation. This study considered smooth plate, plate with the rectangular-structured pillar, and the plate with dual-structured pillar under various characteristic energy conditions. The static behavior of water droplet depending on the plate shape, plate surface energy, and the pillar characteristics were examined. After the water droplet reaches its steady state, this study investigated the dynamic behavior of the water droplet by applying a constant force. Finally, this study investigated the static and dynamic behaviors of the water droplet by measuring its contact angle and contact angle hysteresis. As a result, we found that the structure was more hydrophobic.

머시닝 센터의 정${\cdot}$동강성 평가에 관한 연구 (A study on the Evaluation for the Static and Dynamic stiffness of a Machining Center)

  • 이춘만;박동근;임상헌
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.294-299
    • /
    • 2005
  • A machining center is a complex dynamic system whose behavior influences the machining stability and machined surface quality. This paper focused on establishment of a measurement system and experimental study on static, dynamic, and modal analysis of a machining center. The dynamic stiffness result by the analysis showed the weak part of the machining center. The results provided structure modification data for getting better dynamic behaviors.

  • PDF

팀 학습행동이 팀 효과성에 미치는 영향과 팀 동적역량의 매개효과 (The Effects of Team Learning Behavior on Team Effectiveness and the Mediating Effects of Team Dynamic Capabilities)

  • 이균재;홍아정
    • 지식경영연구
    • /
    • 제15권4호
    • /
    • pp.57-78
    • /
    • 2014
  • Since team performance has become one of the core factors for companies' success, companies are putting every effort to raise team productivity. In this vein, the purpose of this study was to examine the influence of team learning behavior upon team dynamic capabilities, team effectiveness, and to verify the mediating effect of team dynamic capabilities in corporations. 312 employees were randomly selected to participate in an questionnaire survey. The result has shown that the static correlation exists between team learning behavior, team dynamic capabilities, and team effectiveness. Team dynamic capabilities mediated the relationship between team learning behavior and team effectiveness. Based on the findings, the study implies that learning behaviors among team members should be supported in order to improve its outcome, and HR representatives must help to develop dynamic capabilities.

철도차량하중에 의한 디스크받침의 정·동적 거동특성 (Static and Dynamic Behavior of Disk Bearings under Railway Vehicle Loading)

  • 오세환;최은수;정희영;김학수
    • 한국강구조학회 논문집
    • /
    • 제18권4호
    • /
    • pp.469-480
    • /
    • 2006
  • 본 연구의 목적은 철도차량하중으로 인한 디스크받침의 정 동적 거동특성을 평가하여, 디스크 받침 설계기술 발전에 기여하고자 함이다. 디스크받침은 탄성받침의 일종으로 폴리우레탄 패드를 사용하여 탄성을 구현하고 있으며, 가동단에는 PTFE를 사용하여 교량의 움직임을 흡수하고 있다. 실험실에서 수차례의 정적 실험을 실시하여 폴리우레탄 고무의 정적거동을 평가하기 위한 데이터를 획득하였다. 또한, 4개의 디스크받침은 철도교량인 판형교에 설치하여 철도차량에 의한 디스크받침의 동적 거동을 측정하였다. 현장실험은 기관차 1량을 사용하여 일정속도로 주행하는 주행시험을 실시하여 각 디스크받침의 동적 변형과 이에 작용하는 동적 하중을 측정하였다. 정적 실험을 통해서 나타난 사실은 수직강성에 크게 기여하는 것이다. 또한 동적 강성은 정적으로 평가된 강성보다 크게 나타났다. 차량의 속도가 증가함에 따라 디스크받침의 변형도 증가하는 것으로 나타났지만, 크게 증가하지는 않았다. 디스크받침의 고정단의 동적 강성이 가동단의 강성보다 크게 나타나는데, 이는 가동단의 PTFE가 변형을 일으키기 때문이라고 판단된다. 이러한 결과는 철도교를 위한 디스크받침 설계기술의 발전에 기여할 것이다.