• 제목/요약/키워드: Static Synchronous Series Compensator

검색결과 41건 처리시간 0.019초

3-레벨 반브리지로 구성된 SSSC의 동특성 분석 (Dynamic Characteristic Analysis of 3-Level Half-bridge SSSC)

  • 박상호;하요철;백승택;김희중;한병문
    • 전력전자학회논문지
    • /
    • 제6권4호
    • /
    • pp.317-324
    • /
    • 2001
  • 본 논문에서는 3-레벨 반브리지 인버터로 구성된 SSSC를 제안하였다. 제안한 SSSC의 동적특성을 분석하기 위해서 1기 무한모선 전력계통에 SSSC응 연결한 것을 가정하고 EMTP 시뮬레이션을 수행하였고, 축소모형 실험으로 그 특성을 확인하였다. 3-레벨 SSSC는 한 상당 6개의 단상 풀브리지 인버터로 구성되었고, PWM모드로 동작한다. 3-레벨 SSSC는 전압 주입을 위한 연계 변압기가 필요하지 않고, 전력계통에서 요구되는 동작전압에 EK라 브리지의 수를 가감하여 용이하게 구성할 수 있다.

  • PDF

Effects of a Static Synchronous Series Compensator (SSSC) Based on a Soft Switching 48-Pulse PWM Inverter on the Power Demand from the Grid

  • Ustun, Taha Selim;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • 제10권1호
    • /
    • pp.85-90
    • /
    • 2010
  • In this paper the effects of a Static Synchronous Series Compensator, which is constructed with a 48-pulse inverter, on the power demand from the grid are studied. Extensive simulation studies were carried out in the MATLAB simulation environment to observe the compensation achieved by the SSSC and its effects on the line voltage, line current, phase angle and real/reactive power. The designed device is simulated in a power system which is comprised of a three phase power source, a transmission line, line inductance and load. The system parameters such as line voltage, line current, reactive power Q and real power P transmissions are observed both when the SSSC is connected to and disconnected from the power system. The motivation for modeling a SSSC from a multi-pulse inverter is to enhance the voltage waveform of the device and this is observed in the total harmonic distortion (THD) analysis performed at the end of the paper. According to the results, the power flow and phase angle can be controlled successfully by the new device through voltage injection. Finally a THD analysis is performed to see the harmonics content. The effect on the quality of the line voltage and current is acceptable according to international standards.

Matlab/Simulink 기반의 IEC 플리커미터를 이용한 플리커 저감효과 모의에 대한 연구 (Analysis of Flicker Mitigation Effects using IEC Digital Flickermeter based on Matlab/Simulink Simulation)

  • 정재안;조수환;권세혁;장길수;강문호
    • 전기학회논문지
    • /
    • 제58권2호
    • /
    • pp.232-238
    • /
    • 2009
  • Flicker, also known as voltage fluctuation, is a newest problem of power quality issues, because it is caused by nonlinear loads such as electrical arc furnace and large-scale induction motor, which are country-widely used as the heavy industries of a country develop. An international standard, International Electrotechnical Commission (IEC) 61000-4-15, was published in 1997 and revised in 2003. With increasing concerns about flicker, its mitigation methods have been also studied. General countermeasures for flicker are divided into three categories: a) enhancing the capacity of supplying system, b) Series elements including series reactor and series capacitor and c) power electronic devices including static VAR compensator (SVC) and static synchronous compensator (STATCOM). This paper introduces how to mitigate the voltage flicker at the point of common coupling (PCC) and presents how to simulate and compare the flicker alleviating effects by each mitigation method, using IEC flickermeter based on the Matlab/Simulink program.

Modeling and Control of VSI type FACTS controllers for Power System Dynamic Stability using the current injection method

  • Park, Jung-Soo;Jang, Gil-Soo;Son, Kwang-M.
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권4호
    • /
    • pp.495-505
    • /
    • 2008
  • This paper describes modeling Voltage Sourced Inverter (VSI) type Flexible AC Transmission System (FACTS) controllers and control methods for power system dynamic stability studies. The considered FACTS controllers are the Static Compensator (STATCOM), the Static Synchronous Series Compensator (SSSC), and the Unified Power Flow Controller (UPFC). In this paper, these FACTS controllers are derived in the current injection model, and it is applied to the linear and nonlinear analysis algorithm for power system dynamics studies. The parameters of the FACTS controllers are set to damp the inter-area oscillations, and the supplementary damping controllers and its control schemes are proposed to increase damping abilities of the FACTS controllers. For these works, the linear analysis for each FACTS controller with or without damping controller is executed, and the dynamic characteristics of each FACTS controller are analyzed. The results are verified by the nonlinear analysis using the time-domain simulation.

Modeling and Analysis of the KEPCO UPFC System by EMTDC/PSCAD

  • Yoon, Jong-Su;Kim, Soo-Yeol;Chang, Byung-Hoon;Lim, Seong-Joo;Choo, Jin-Boo
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권3호
    • /
    • pp.148-154
    • /
    • 2003
  • This paper describes the development of KEPCO's 80MVA UPFC electromagnetic transient model and the analysis of its performance in the actual Korean power system. KEPCO's 80MVA UPFC is currently undergoing installation and will be ready for commercial operation from the year 2003. In order to apply a new FACTS device such as the UPFC to the actual power system, the utility needs, in advance, both load flow stability studies and transient studies. Therefore, KEPRI, the research institute of KEPCO, developed a detailed transient analysis model that is based on the actual UPFC S/W algorithm and H/W specifications. This simulation model is implemented by an EMTDC/PSCAD package. The results of the simulation show the effectiveness of UPFC operation in the KEPCO power system.

Power Management of Open Winding PM Synchronous Generator for Unbalanced Voltage Conditions

  • EL-Bardawil, Ashraf;Moussa, Mona Fouad
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2192-2201
    • /
    • 2016
  • Wind energy is currently the fastest-growing electricity source worldwide. The cost efficiency of wind generators must be high because these generators have to compete with other energy sources. In this paper, a system that utilizes an open-winding permanent-magnet synchronous generator is studied for wind-energy generation. The proposed system controls generated power through an auxiliary voltage source inverter. The VA rating of the auxiliary inverter is only a fraction of the system-rated power. An adjusted control system, which consists of two main parts, is implemented to control the generator power and the grid-side converter. This paper introduces a study on the effect of unbalanced voltages for the wind-generation system. The proposed system is designed and simulated using MATLAB/Simulink software. Theoretical and experimental results verify the validity of the proposed system to achieve the power management requirements for balanced and unbalanced voltage conditions of the grid.

다중브리지로 구성된 SSSC의 동특성 분석 (Dynamic Characteristic Analysis of Multi-bridge SSSC)

  • 한병문;박덕희;백승택;김희중;소용철;김현우
    • 전력전자학회논문지
    • /
    • 제5권3호
    • /
    • pp.229-237
    • /
    • 2000
  • 본 논문에서는 멀티브리지 인버터로 구성된 SSSC를 제안하였다. SSSC의 동적특성을 분석하기 위해서 1기 무한모선 전력계통에 SSSC를 연결한 것을 가정하고 EMTP 시뮬레이션을 수행하였고, 축소모형 실험으로 그 특성을 확인하였다. 다중브리지 SSSC는 한 상당 6개의 단상 풀브리지 인버터로 구성되었고, 13-레벨 출력전압을 얻을 수 있다. 다중브리지 SSSC는 전압 주입을 위한 연계 변압기가 필요하기 않고, 전력계통에서 요구되는 동작전압에 따라 브리지 수를 가감하여 용이하게 구성할 수 있다.

  • PDF

전력조류계산을 위한 SSSC모델의 개발과 연속조류계산 알고리듬에의 적용 (Development of SSSC Power Flow Model and its Implementation into Continuation Power Flow Algorithm)

  • 김슬기;송화창;이병준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1158-1160
    • /
    • 1999
  • This paper proposes a SSSC(Static Synchronous Series Compensator) power flow model to be incorporated into power flow calculation for the steady state analysis of the power system. SSSC provides controllable compensating voltage, which is in quadrature with the line current, over an capacitive and an inductive range, independently of the magnitude of the line current. This SSSC model is obtained from the injection model for series connected VSC(Voltage Source Converter) by adding a constraint that the injected voltage should be in quadrature with the line current. In this paper the static model is implemented into the continuation power-flow (CPF) program. It is shown that SSSC has its intrinsic superiority over TCSC in controllable power flow range.

  • PDF

직렬 보상 선로에서의 SSR 억제를 위한 강인한 STATCOM 보조 제어기의 설계 (Design of a Robust STATCOM Supplementary Controller to Suppress the SSR in the Series-compensated System)

  • 서장철;문승일;박종근
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권3호
    • /
    • pp.136-141
    • /
    • 2000
  • This paper presents the design of an H$\infty$ based robust Static Synchronous Compensator (STATCOM) supplementary controller to suppress the subsynchronous resonance (SSR) in the series-compensated system. The IEEE second benchmark, System-l model is employed for this study. In order to design the effective controller, the modal controllability and observability indices to the oscillation modes are considered. Comprehensive time domain simulations using a nonlinear system model that the proposed STATCOM supplementary controller can suppress the SSR efficiently in spite of the variations of power system operating conditions.

  • PDF

EMTP 시뮬레이션과 축소모형 실험에 의한 SSSC의 성능 해석 (New Performance Analysis of SSSC with EMPT Simulation and Scaled-model Experiment)

  • 강중구;한병문
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권5호
    • /
    • pp.524-530
    • /
    • 1999
  • This paper describes performance analysis techniques for SSSC using computer simulations with EMPT and experiments with a hardware scaled-model. A switching-level simulation model with EMTP was developed for the SSSC connected in series with the transmission line. The increase of transmission capability and dynamic performance was analyzed with the simulation model. The simulation results were reverified by experimental works with a hardware scaled-model. The developed analysis techniques can be used for designing and evaluating actual system of SSSC.

  • PDF