• Title/Summary/Keyword: Static Structural Test

Search Result 630, Processing Time 0.024 seconds

Investigation of the structural performance of a masonry domed mosque by experimental tests and numerical analysis

  • Seker, Burcin S.;Cakir, Ferit;Dogangun, Adem;Uysal, Habib
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.335-350
    • /
    • 2014
  • Historical masonry mosques are the most important structures of Islamic societies. To estimate the static and dynamic behavior of these historical structures, an examination of their restoration studies is very important. In this study, Kara Mustafa Pasha Mosque, which was built as a domed mosque by Kara Mustafa Pasha between 1666-1667 in Amasya, Turkey, has been analyzed. This study investigates the structural behavior and architectural features of the mosque. In order to determine specific mechanical properties, compression and three-point bending tests were conducted on materials, which have similar age and show similar properties as the examined mosque. Additionally, a three-dimensional finite element model of the mosque was developed and the structural responses were investigated through static and dynamic analyses. The results of the analyses were focused on the stresses and displacements. The experimental test results indicate that the construction materials have greatly retained their mechanical properties over the centuries. The obtained maximum compression and tensile stresses from the analyses have been determined as smaller than the materials' strengths. However, the stresses calculated from dynamic analysis might cause structural problems in terms of tensile stresses.

Improving the flexural toughness behavior of R.C beams using micro/nano silica and steel fibers

  • Eisa, Ahmed S.;Shehab, Hamdy K.;El-Awady, Kareem A.;Nawar, Mahmoud T.
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.45-58
    • /
    • 2021
  • Experimental investigation has been conducted to study the effect of using Micro/Nano Silica in presence of steel fibers on improving the static response of reinforced concrete beams. Twenty-one mixtures were prepared with micro silica (MS), Nano silica (NS) and steel fibers (SFs) at different percentages. Cement was replaced by 10% and 15% of Micro silica and 1%, 2% and 3% of Nano silica in the presence of steel fibers at different volume fractions 0%, 1%, and 2%. 258 concrete samples, (126 cubes, 63 cylinders, 63 prisms, and six R.C beams), were investigated experimentally in two stages. The first stage was to investigate the mechanical properties of the prepared mixtures. The second stage was to study the static behavior of R.C beams, using the designed concrete mixtures, under a four-point flexural test. The results showed that replacing cement by (10% MS and 1% NS) produces the optimum mix with a significant improvement in the mechanical properties and the response of R.C beams under static loads. In addition, incorporating steel fibers at different volume fractions have a considerable effect on the flexural toughness of concrete mixes.

Integrity Estimation of The RC Members Damaged by Corrosion of Main Rebar (철근이 부식된 철근콘크리트 구조물의 건전도 평가기술)

  • Kwon, Dae Hong;Yoo, Suk Hyeong;Noh, Sam Young
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.141-146
    • /
    • 2007
  • It is necessary to guarantee the safety, serviceability and durability of reinforced concrete structures over their service life. However, concrete structures represent a decrease in their durability due to the effects of external environments according to the passage of time, and such degradation in durability can cause structural degradation in materials. In concrete structures, some degradations in durability increase the corrosion of embedded rebars and also decrease the structural performance of materials. Thus, the structural condition assessment of RC materials damaged by corrosion of rebars becomes an important factor that judges needs to apply restoration. In order to detect the damage of reinforced concrete structures, a visual inspection, a nondestructive evaluation method(NDE) and a specific loading test have been employed. However, obscurities for visual inspection and inaccessible members raise difficulty in evaluating structure condition. For these reasons, detection of location and quantification of the damage in structures via structural response have been one of the very important topics in system identification research. The main objective of this project is to develope a methodologies for the damage identification via static responses of the members damaged by durability. Six reinforced concrete beams with variables of corrosion position and corrosion width were fabricated and the damage detections of corroded RC beams were performed by the optimization and the conjugate beam methods using static deflection. In results it is proved that the conjugate beam method could predict the damage of RC members practically.

Safety Evaluation of Bogie Frame for Tilting Railway Vehicles by Fatigue and Nondestructive Tests (피로시험 및 비파괴 검사를 통한 틸팅열차용 주행장치 프레임의 안전성 평가)

  • Kim Jung-Seok;Kim Nam-Po
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.5
    • /
    • pp.419-424
    • /
    • 2005
  • This paper has performed fatigue and nondestructive test of bogie frame for Korean tilting train. Before the fatigue test, static tests were carried out. From the test, the structural safety was investigated using Goodman diagram. After the static test, the fatigue test were conducted under tilting load conditions. The fatigue test was conducted for $10{\times}10^6$ cycles. During the fatigue test, the nondestructive tests using magnetic particle and liquid penetrant were performed at $6{\times}10^6$ cycle and $10{\times}10^6$cycle. From the crack detection tests, it was known that there was no fatigue crack in the bogie frame.

전기체 정적시험 치구설계 기술보고서

  • Kim, Sung-Chan;Shin, Jeong-Woo;Shim, Jae-Yeul;Hwang, In-Hee
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.32-44
    • /
    • 2002
  • This paper contains the information that describes the test fixture design and technology for full-scale airframe static test. Obtained technologies consist of determination of design load for test fixture, design technique for loading system, counterbalance system, positioning system of test article, test equipment and overload protection method. Full-scale airframe static test of advanced jet trainer was implemented using test fixture which are applied these technique.

  • PDF

The Study of Advanced Propeller Blade for Next Generation Turboprop Aircraft -Part II. Static Structural Design and Test (차세대 터보프롭 항공기용 최신 프로펠러 블레이드 연구 -Part II. 정적 구조 설계 및 시험)

  • Choi, Won;Park, Hyun-Bum;Kong, Chang-Duk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.336-343
    • /
    • 2014
  • Modern advanced-turboprop propellers are required to have high structural strength to cope with the thrust requirement at high speed. The high stiffness and strength carbon/epoxy composite material is used for the major structure and skin-spar-foam sandwich structural type is adopted for advantage in terms of the blade weight. As a design procedure for the present study, the structural design load is estimated through investigation on aerodynamic load and then flanges of spars from major bending loads and the skin from shear loads are sized using the netting rule and Rule of Mixture. In order to investigate the structural safety and stability, stress analysis is performed by finite element analysis code MSC. NASTRAN. It is found that current methodology of composite structure design is a valid method through the static structural test of prototype blade.

Bridge-vehicle coupled vibration response and static test data based damage identification of highway bridges

  • Zhu, Jinsong;Yi, Qiang
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.75-90
    • /
    • 2013
  • In order to identify damage of highway bridges rapidly, a method for damage identification using dynamic response of bridge induced by moving vehicle and static test data is proposed. To locate damage of the structure, displacement energy damage index defined from the energy of the displacement response time history is adopted as the indicator. The displacement response time histories of bridge structure are obtained from simulation of vehicle-bridge coupled vibration analysis. The vehicle model is considered as a four-degree-of-freedom system, and the vibration equations of the vehicle model are deduced based on the D'Alembert principle. Finite element method is used to discretize bridge and finite element model is set up. According to the condition of displacement and force compatibility between vehicle and bridge, the vibration equations of the vehicle and bridge models are coupled. A Newmark-${\beta}$ algorithm based professional procedure VBAP is developed in MATLAB, and used to analyze the vehicle-bridge system coupled vibration. After damage is located by employing the displacement energy damage index, the damage extent is estimated through the least-square-method based model updating using static test data. At last, taking one simply supported bridge as an illustrative example, some damage scenarios are identified using the proposed damage identification methodology. The results indicate that the proposed method is efficient for damage localization and damage extent estimation.

Influence of dimensional ratio on collapse characteristics for the thin-walled structures of light weight (경량화용 박육부재의 형상비가 압궤특성에 미치는 영향)

  • 정종안;김정호;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.11-23
    • /
    • 1998
  • In this study, collapse test of thin-walled structure is performed under axially quasi-static and impact load in collapse characteristic to develop the optimum structural member for a light-oriented automobile. Furthermore, the energy-absorbing capacity is observed according to the variety of configuration(circular, square), aspect ratio in aluminum specimen to obtain basic data for the improved member of vehicle. In both quasi-static and impact collapse test, Al circular specimens collapse, in general, with axisymmetric mode in case of thin thickness while collapse with non-axisynmetric mode according to the thickness increase. For Al rectangular specimens, they collapse with axisymmetric mode in case of thin thickness, with mixed collapse mode according to the increase of thickness. In terms of initial max. load, Al square specimen turns out the best member among specimens, and then Al square, circular and circular with large scaling ratio, respectively. In case of quasi-static compression test, the absorbed energy per unit volume and mass shows higher in Al circular specimen, and then Al square, circular with large scaling ratio, respectively, according to shape ratio the absorbed energy per unit volume and mass in case of max. impact compression load is higher than that of static load. But the absorbed energy per unit volume and mass shows that Al circular specimen is the best member. Especially, unlike max. compression loan, the absorbed energy per unit volume and mass in impact test turns out the low value.

  • PDF

Structural Analysis and Integrity Verification of Main Wing of HALE UAV (성층권 장기체공 무인기 주익 구조 해석 및 건전성 평가)

  • Park, Sang Wook;Kim, Sung Joon;Shin, Jeong Woo;Lee, Seunggyu;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • Recently, development of long endurance electric powered airplane has been conducted worldwidely. Light structural weight of a main wing with sufficient structural integrity is essential for long endurance flight. Since a main wing with a slender spar can occur catastrophic fracture under the flight, it is important to establish a design and verification method for both the weight reduction and structural integrity. In this paper, structural design and analysis of the main wing of HALE UAV with tubular spar reinforced with a bulkhead were introduced. The static strength test of the main wing was performed to verify structural integrity under the static load. Then, the experimental result was compared with an analytical result from a finite element analysis. It was concluded that the developed light weight main wing would have sufficient structural integrity under the flight operation.

비아50 구조 구성품 정적강도 시험

  • Kang, Wang-Gu;Kim, Dong-Min;Lee, Jin-Woo;Yeom, Chan-Hong
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.27-34
    • /
    • 2004
  • Tail-wing, gondola and thrust motor mount(EMS) were built by carbon/glass fiber composites. Structural strength & stiffness was verified by specimen tests. Static strength tests for each structural components were conducted separately. Boundary conditions are specially designed for each components to simulate exact joint conditions. Tests shows no detriment deformation at 100% DLL and no failure at 150% DLL.

  • PDF