• 제목/요약/키워드: Static Pressure

검색결과 1,378건 처리시간 0.033초

Development of The New High Specific Speed Fixed Blade Turbine Runner

  • Skotak, Ales;Mikulasek, Josef;Obrovsky, Jiri
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.392-399
    • /
    • 2009
  • The paper concerns the description of the step by step development process of the new fixed blade runner called "Mixer" suitable for the uprating of the Francis turbines units installed at the older low head hydropower plants. In the paper the details of hydraulic and mechanical design are presented. Since the rotational speed of the new runner is significantly higher then the rotational speed of the original Francis one, the direct coupling of the turbine to the generator can be applied. The maximum efficiency at prescribed operational point was reached by the geometry optimization of two most important components. In the first step the optimization of the draft tube geometry was carried out. The condition for the draft tube geometry optimization was to design the new geometry of the draft tube within the original bad draft tube shape without any extensive civil works. The runner blade geometry optimization was carried out on the runner coupled with the draft tube domain. The blade geometry of the runner was optimized using automatic direct search optimization procedure. The method used for the objective function minimum search is a kind of the Nelder-Mead simplex method. The objective function concerns efficiency, required net head and cavitation features. After successful hydraulic design the modal and stress analysis was carried out on the prototype scale runner. The static pressure distribution from flow simulation was used as a load condition. The modal analysis in air and in water was carried out and the results were compared. The final runner was manufactured in model scale and it is going to be tested in hydraulic laboratory. Since the turbine with the fixed blade runner does not allow double regulation like in case of full Kaplan turbine, it can be profitably used mainly at power plants with smaller changes of operational conditions or in case with more units installed. The advantages are simple manufacturing, installation and therefore lower expenses and short delivery time for turbine uprating.

자가관류법에 의한 체외심폐의 혈역학적 변동에 관한 실험적 연구 (The experimental study for hemodynamic changes in the heart-lung preparatio by autoperfusion)

  • 한승세
    • Journal of Chest Surgery
    • /
    • 제22권2호
    • /
    • pp.179-190
    • /
    • 1989
  • The experimental study for extracorporeal preservation of the heart-lung preparation by autoperfusion system was performed in 10 dogs. Under intravenous Pentothal endotracheal anesthesia bilateral thoracotomies were performed. A 24F cannula connected to a plastic reservoir bag located 100 cm above the level of the heart was introduced into the aortic arch. Left subclavian, innominate artery, and descending aorta were ligated and divided. Both vena cavae were ligated and divided after the bag was half filled with blood. A 24F catheter inserted into right atrium and connected to the plastic bag in order to keep constant the preload. The thoracic trachea was intubated and the lungs were ventilated. The heart-lung preparations were removed en bloc and floated in a $34^{\circ}C$ bath of Hartmann solution. The preparations were observed for from 2 hours to 8 hours, with the average of 5.2 hours. Hemodynamic and hematologic variables were measured during preharvest and autoperfusion. The pH revealed severe respiratory alkalosis due to very low $PaCO_2$ during autoperfusion ; $PaO_2$ remained constant for 130-140 mmHg; $A-aDO_2$ increased markedly. The static inspiratory pressure [SIP] at late autoperfusion [6hr] increased significantly as compared with at early autoperfusion [2hr]. There was no difference between white blood cell counts from right atrium and those of left atrium. Heart rates remained constant for 110-120/min; cardiac outputs maintained to approximately 0.6L/min; mean aortic pressures, 75 mmHg; mean pulmonary arterial pressures, 15-18 mmHg; mean right atrial pressures, 9-13 mmHg; mean left atrial pressures, 12 mmHg lower than those of right atrium. Serum Na maintained with normal range during autoperfusion; K increased significantly; Ca decreased progressively. Hemoglobin and hematocrit decreased significantly during autoperfusion. The study demonstrated that stable hemodynamics could be maintained throughout the experiment and the preparation of the lung seemed to be inadequate, especially after 3-4 hours, such as high $A-aDO_2$, increased SIP, and scattered atelectasis and edema in their gross appearances.

  • PDF

단순화된 2차원 자동차형 물체주위 유동에 관한 수치해석적 연구 (A Numerical Study on Flows Over Two-Dimensional Simplified Vehicle-Like Body)

  • 강신형;이영림;유정열;이택시;김응서
    • 대한기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.277-286
    • /
    • 1989
  • 본 논문에서는 유정열 등에서 수행된 단순화된 자동차형 2차원 물체 주위의 유동에 관한 실험적 연구와 병행하여 이루어진 수치해석적 연구의 일부와 계속된 일련의 연구를 다루었다. 수치해석은 k-.epsilon. 난류모델과 body-fitted 좌표계를 채택하여 수행하였으며, 우선 수치계산의 합리성 및 문제점을 파악하였다. 이어서 지면효과와 물체 후미의 경사각의 영향에 대하여 수치해석적으로 연구하였다.

마찰을 고려한 포일저널베어링의 동특성해석: 회전불균형 응답 (The Dynamic Performance Analysis of Foil Journal Bearings Considering Coulomb Friction: Rotating Unbalance Response)

  • 김경웅;이동현;김영철
    • Tribology and Lubricants
    • /
    • 제23권5호
    • /
    • pp.219-227
    • /
    • 2007
  • The dynamic performance of air foil bearings relies on a coupling between a thin air film and an elastic foil structure. A number of successful analytical techniques to predict dynamic performance have been developed. However, the evaluation of its dynamic characteristic is still not enough because of the mechanical complexity of the foil structure and strong nonlinear behavior of friction force. This work presents a nonlinear transient analysis method to predict dynamic performance of foil bearings. In this method, time dependent Reynolds equation is used to calculate pressure distribution and a finite element method is used to model the bump foil structure. The analysis is treated with a direct implicit integration technique that can handle nonlinear problems and the stick-slip algorithm is used to consider friction force. Using this method the response to the mass unbalance excitation is investigated for various design parameters and operating conditions. The results of analysis show that foil bearing is very effective on the restriction of vibration at the resonance frequency compared to the rigid surface bearings and the effectiveness depends on the operating conditions, static load and a amount of mass unbalance. In addition, there exist optimum values of friction coefficient, bump foil stiffness and number of circumferential slit with regards to minimizing dynamic response at the resonance frequency. These optimum values are system dependent.

DADS를 이용한 밸런스 샤프트 장착 직렬 3기통 엔진의 진동 해석 (Vibration Analysis of In-line Three Cylinder Engine with Balance Shaft Using DADS)

  • 서권희;민한기;천인범
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.148-156
    • /
    • 2000
  • For the in-line three cylinder engine whose crankshaft has a phase of 120 degrees, the total sum of unbalanced inertia forces occurring in each cylinder will be counterbalanced among three cylinders. However, parts of inertia forces generated at the No.1 and No.3 cylinders will cause a primary moment about the No.2 cylinder. In order to eliminate this out-of-balance moment, a single balance shaft has been attached to the cylinder block so that the engine durability and riding comfort may be further improved. Accordingly, the forced vibration analysis of the in-line three cylinder engine must be implemented to meet the required targets at an early design stage. In this paper, a method to reduce noise and vibration in the 800cc, in-line three cylinder LPG engine is suggested using the multibody dynamic simulation. The static and dynamic balances of the in-line three cylinder engine are investigated analytically. The multibody dynamic model of the in-line three cylinder engine is developed where the inertia properties of connecting rod, crankshaft, and balance shaft are extracted from their FE-models. The combustion pressure within the No.1 cylinder in three significant operating conditions(1500rpm-full load, 4000rpm-full load and 7000rpm-no load)is measured from the actual tests to excite the engine. The vibration velocities at three engine mounts with and without balance shaft are evaluated through the forced vibration analysis. Obviously, it is shown that the vibration of the in-line three cylinder engine with balance shaft is reduced to the acceptable level .

  • PDF

온실에서 방울토마토 수확작업시 작업자의 생리학적 및 생체역학적 반응 측정 (Measurement of Worker's Physiological and Biomechanical Responses during the Cherry Tomato Harvesting Work in a Greenhouse)

  • 선우훈;임기택;김장호;손현목;정종훈
    • Journal of Biosystems Engineering
    • /
    • 제36권3호
    • /
    • pp.223-230
    • /
    • 2011
  • Physiological signals such as body temperature, heart rate, blood pressure and heart rate variability and biomechanical workload for stress analysis were investigated during the cherry tomato harvesting work in a greenhouse. The skin temperatures raised $0.05^{\circ}C$/min, $0.03^{\circ}C$/ min, and $0.08^{\circ}C$/min in standing, stooping and squatting postures, respectively. Breath rate significantly increased from 18 to 28 breaths/min during the cherry tomato harvesting work. As the heart rate during the work ranged from about 72 to 110 beats/min (bpm), the cherry tomato harvesting work appeared to be a light intensity task of less than 110 bpm. The worker's average energy consumption rate in three positions during 43 min working time was 65.74 kcal (91 kcal/h in 70 kg). This was a light intensity of work, compared to 75 kcal/h in 70 kg of basic metabolic energy consumption rate of a worker with 70 kg weight; The maximum shear force on the disk (L5/ S1) due to static workload in the cherry tomato harvesting work was 446 N in the stooping posture, 321 N in the squatting posture and 287 N in the standing posture. Acute stress index expressed with the heart rate variability, increased parasympathetic activation up to about 70 while workers were doing most agricultural work in this study. This study provided a system to measure quantitatively workers' physiological change, kinematics and kinetic factors without any restrictions of space in the greenhouse works.

신장 아크 반응기를 이용한 메탄 CO2 개질반응에서 방전 전압-전류특성의 영향 (Influence of Discharge Voltage-Current Characteristics on CO2 Reforming of Methane using an Elongated Arc Reactor)

  • 김관태;황나경;이재옥;이대훈;허민;송영훈
    • 한국대기환경학회지
    • /
    • 제26권6호
    • /
    • pp.683-689
    • /
    • 2010
  • Reforming of methane with carbon dioxide has been carried out using a bipolar pulse driven elongated arc reactor operating at atmospheric pressure and non-equilibrium regime. This plasma reactor is driven by two kinds of power supply, characterized by different voltage-current characteristics under the same operating power and frequency. Varying the $CO_2/CH_4$ ratio and the discharge power, the conversion rate, yield, and reforming efficiency for the two power supplies are investigated in conjunction with the static and dynamic behaviors of voltage and current. It is found that not only the values of voltage and current but also their shapes give an influence on the reforming performances. Finally, a better electrical operation regime for the efficient plasma reforming is proposed based on the relationship between the voltage-current characteristics and the reforming performance.

Leakage Flow Influence on SHF pump model performances

  • Dupont, Patrick;Bayeul-Laine, Annie-Claude;Dazin, Antoine;Bois, Gerard;Roussette, Olivier;Si, Qiaorui
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권4호
    • /
    • pp.274-282
    • /
    • 2015
  • This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 9.06 code (RANS frozen and unsteady calculations). Some results were already presented at the XXth IAHR Symposium for three flowrates for RANS frozen and URANS calculations. In the present paper, comparisons between URANS calculations with and without leakages and experimental results are presented and discussed for these flow rates. The performances of the diffuser obtained by numerical calculations are compared to those obtained by the three-holes probe measurements. The comparisons show the influence of fluid leakages on global performances and a real improvement concerning the efficiency of the diffuser, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.

내부냉각노즐의 열차폐코팅을 위한 복합열전달 해석기법 연구 (Study on the Conjugate Heat Transfer Analysis Methodology of Thermal Barrier Coating on the Internal Cooled Nozzle)

  • 김인겸;김진욱;이동호;조진수
    • 한국유체기계학회 논문집
    • /
    • 제18권3호
    • /
    • pp.38-45
    • /
    • 2015
  • In this study, two computational methodologies were compared to consider an effective conjugate heat transfer analysis technique for the cooled vane with thermal barrier coating. The first one is the physical modeling method of the TBC layer on the vane surface, which means solid volume of the TBC on the vane surface. The second one is the numerical modeling method of the TBC layer by putting the heat resistance interface condition on the surface between the fluid and solid domains, which means no physical layer on the vane surface. For those two methodologies, conjugate heat transfer analyses were conducted for the cooled vane with TBC layer having various thickness from 0.1 mm to 0.3 mm. Static pressure distributions for two cases show quite similar patterns in the overall region while the physical modeling shows quite a little difference around the throat area. Thermal analyses indicated that the metal temperature distributions are quite similar for both methods. The results show that the numerical modeling method can reduce the computational resources significantly and is quite suitable method to evaluate the overall performance of TBC even though it does not reflect the exact geometry and flow field characteristics on the vane surface.

명중률 향상을 위한 이중추력형 비행모터 개발에 대한 연구 (A Study on Development of the Dual-thrust Flight Motor for Enhancing the Hit Probability)

  • 김한준;김은미;김남식;이원복;양영준
    • 한국추진공학회지
    • /
    • 제18권4호
    • /
    • pp.74-80
    • /
    • 2014
  • 본 논문은 무유도 로켓탄의 명중률을 향상시키기 위해 개발한 이중추력형 비행모터에 관하여 기술하였다. 고연소속도 특성을 지닌 더블베이스 추진제의 형상 조절을 통해 이중추력형 비행모터를 설계하였으며, 실제 지상연소시험을 통해 이중추력 성능을 확인하였다. 연소시험 결과 서스테이닝 단계와 부스팅 단계의 추력비는 약 1:7.6으로 정상적인 이중추력 특성을 보였으며, 압력강하에 의한 추진제 소화현상은 나타나지 않았다.