• Title/Summary/Keyword: Static Modeling

Search Result 716, Processing Time 0.032 seconds

Game Theoretic Modeling for Mobile Malicious Node Detection Problem in Static Wireless Sensor Networks

  • Ho, Jun-Won
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.238-242
    • /
    • 2021
  • Game theory has been regarded as a useful theoretical tool for modeling the interactions between distinct entities and thus it has been harnessed in various research field. In particular, research attention has been shown to how to apply game theory to modeling the interactions between malign and benign entities in the field of wireless networks. Although various game theoretic modeling work have been proposed in the field of wireless networks, our proposed work is disparate to the existing work in the sense that we focus on mobile malign node detection problem in static wireless sensor networks. More specifically, we propose a Bayesian game theoretic modeling for mobile malign node detection problem in static wireless sensor networks. In our modeling, we formulate a two-player static Bayesian game with imperfect information such that player 1 is aware of the type of player 2, but player 2 is not aware of the type of player 1. We use four strategies in our static Bayesian game. We obtain Bayesian Nash Equilibria with pure strategies under certain conditions.

Resource Based Simulation in Semiconductor Business (반도체 R&D BPR 시뮬레이션)

  • 김원경;이종복
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.05a
    • /
    • pp.31-35
    • /
    • 2001
  • Simulation --- The ideal tool for BPR. Work now and CASE tools are static modeling tools. Based on our own customers surveys, we have discovered that the use of process modeling tools thus far has focused on modeling the current(What-Is) state of a business. We have found that 90 percent of reengineering projects, the modeling tools of choice have been flowcharting tools. Static models offer help in understanding the overall nature of an existing process. However, static models can not really help you see the step by step motions towards completion of your goals. In static modeling, you see two pictures in time, usually taken at the current state and final state models of your reengineering project. Static models are usually not object oriented, therefore can not show facility or office layout and movement of entities and objects throughout the facility. However, this does not mean that static modeling does not have its application nor add value to the user as in a few success stories. Simulation helps the team analyze the complex aspects of the project. Many times a plan that looks good on paper might turn out entirely different when put into action. Therefore, simulation helps you look at how situations might work before actual implementation. In particular, computer simulation models help you view a reengineered condition before they are rolled-out. Items such as a lead time and resource allocation.

  • PDF

On-line Static Load Modeling using Measurement Data (측정데이터를 이용한 실시간 정적 부하모델링)

  • Park, Sang-Hyun;Chung, Dong-Hyun;Kang, Sang-Gyun;Lee, Byong-Joon;Kwon, Sae-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.282-284
    • /
    • 2006
  • In this paper, Static load models are developed using measurement based approach which is fundamental for on-line load modeling. The measurement data can be acquired from PMU(phasor measurement units). On the assumption that we have on-line measurement data, a scheme which is for Static load model capable to apply SCADA/EMS is developed. The Least Squares criterion is used for minimizing between measured and simulated data. In this manner, On-line Static load modeling algorithm can be developed. In this paper, a scheme that simple Static load model is applied for On-line load modeling is studied.

  • PDF

Editing Depression Features in Static CAD Models Using Selective Volume Decomposition (선택적 볼륨분해를 이용한 정적 CAD 모델의 함몰특징형상 수정)

  • Woo, Yoon-Hwan;Kang, Sang-Wook
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.178-186
    • /
    • 2011
  • Static CAD models are the CAD models that do not have feature information and modeling history. These static models are generated by translating CAD models in a specific CAD system into neutral formats such as STEP and IGES. When a CAD model is translated into a neutral format, its precious feature information such as feature parameters and modeling history is lost. Once the feature information is lost, the advantage of feature based modeling is not valid any longer, and modification for the model is purely dependent on geometric and topological manipulations. However, the capabilities of the existing methods to modify static CAD models are limited, Direct modification methods such as tweaking can only handle the modifications that do not involve topological changes. There was also an approach to modify static CAD model by using volume decomposition. However, this approach was also limited to modifications of protrusion features. To address this problem, we extend the volume decomposition approach to handle not only protrusion features but also depression features in a static CAD model. This method first generates the model that contains the volume of depression feature using the bounding box of a static CAD model. The difference between the model and the bounding box is selectively decomposed into so called the feature volume and the base volume. A modification of depression feature is achieved by manipulating the feature volume of the static CAD model.

Static Modeling of a Miniaturized Continuum Robot for Surgical Interventions and Displacement Analysis under Lateral External Loads (중재 시술 적용을 위한 소형 연속체 로봇의 정역학 모델링 및 외부 측면 하중에 의한 변위 분석)

  • Kim, Kiyoung;Woo, Hyunsoo;Cho, Jangho;Shin, Minki;Suh, Jungwook
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.301-308
    • /
    • 2020
  • In this paper, we deal with the static modeling of a continuum robot that can perform surgical interventions. The proposed continuum robot is made of stainless steel wires and a multi lumen flexible tube using a thermoplastic elastomer. This continuum robot could be most severely deformed in physical contact with narrow external environments, when a lateral external force acts at the distal tip of the continuum robot. In order to predict the shape and displacement under the lateral external force loading, the forward kinematics, the statics modeling, the force-moment equilibrium equation, and the virtual work-energy method of the continuum robot are described. The deflection displacements were calculated using the virtual work-energy method, and the results were compared with the displacement obtained by the conventional cantilever beam theories. In conclusion, the proposed static modeling and the virtual work-energy method can be used in arrhythmia procedure simulations.

Solution verification procedures for modeling and simulation of fully coupled porous media: static and dynamic behavior

  • Tasiopoulou, Panagiota;Taiebat, Mahdi;Tafazzoli, Nima;Jeremic, Boris
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.67-98
    • /
    • 2015
  • Numerical prediction of dynamic behavior of fully coupled saturated porous media is of great importance in many engineering problems. Specifically, static and dynamic response of soils - porous media with pores filled with fluid, such as air, water, etc. - can only be modeled properly using fully coupled approaches. Modeling and simulation of static and dynamic behavior of soils require significant Verification and Validation (V&V) procedures in order to build credibility and increase confidence in numerical results. By definition, Verification is essentially a mathematics issue and it provides evidence that the model is solved correctly, while Validation, being a physics issue, provides evidence that the right model is solved. This paper focuses on Verification procedure for fully coupled modeling and simulation of porous media. Therefore, a complete Solution Verification suite has been developed consisting of analytical solutions for both static and dynamic problems of porous media, in time domain. Verification for fully coupled modeling and simulation of porous media has been performed through comparison of the numerical solutions with the analytical ones. Modeling and simulation is based on the so called, u-p-U formulation. Of particular interest are numerical dispersion effects which determine the level of numerical accuracy. These effects are investigated in detail, in an effort to suggest a compromise between numerical error and computational cost.

Voltage-dependent Power-Factor Modeling with Harmonic Component by Static Experiments of Individual and Composite Loads (개별기기 및 종합부하 실험에 의한 고조파 성분을 고려한 전압에 대한 부하역률 모델링)

  • Shin, Chang-Ki;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.230-233
    • /
    • 2004
  • This paper is proposed that The voltage-dependant power factor model is established as 5th polynomials with convenience data type. This modeling includes the harmonic components by static experiments of individual and composite load. This paper suggested methodology for modeling bus and regional power factor with consideration of harmonics effect by load composition rates and individual load power factor models.

  • PDF

Study of Static/Dynamic Load Model by measurement (실측에 의한 Static/Dynamic 부하모델 개발 연구)

  • Choi, H.K.;Moon, Y.H.;Yoon, J.Y.;Jeon, J.H.;Choo, J.B.;Yun, Y.B.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.58-60
    • /
    • 2000
  • This paper presents the modeling methods to analyze the static and dynamic performances for practical power system loads using field measurement data. Also, it is included that the several modeling techniques using EMTDC program and field measuring method for real static dynamic loads. As a result of this study, through the comparisons between simulation results and measurement data, typical parameters of static and dynamic loads according to the variation of system voltage and frequency are given.

  • PDF

A Computational Modeling Reflecting Static and Dynamic Characteristics of LM Bearings for Machine Tools (공작기계 LM 베어링의 정동적 특성을 반영하는 전산 모델링)

  • Kim, Hye-Yeon;Jeong, Jong-Kyu;Won, Jong-Jin;Jeong, Jay-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1062-1069
    • /
    • 2012
  • This paper suggests a computational modeling to reflect static/dynamic characteristics of LM bearings. A theoretical study for modeling LM bearings is elucidated by using the Hertz contact theory, the Lagrange's equation of motion, normal mode analysis and a calculation of equivalent moment center. The complex geometry of LM bearings is replaced by a simplified model with eight springs only. The suggested model reflects static and dynamic characteristics of LM bearings without any consideration for the shape of the bed or stages on the LM bearings. The modal experimental results are compared to the simulation results with the suggested computational modeling. The difference between the experiments and simulation is calculated less than 8%.