• 제목/요약/키워드: Static Map

검색결과 116건 처리시간 0.025초

자율주행 인지를 위한 마코브 모델 기반의 정지 장애물 추정 연구 (Markov Model-based Static Obstacle Map Estimation for Perception of Automated Driving)

  • 윤정식;이경수
    • 자동차안전학회지
    • /
    • 제11권2호
    • /
    • pp.29-34
    • /
    • 2019
  • This paper presents a new method for construction of a static obstacle map. A static obstacle is important since it is utilized to path planning and decision. Several established approaches generate static obstacle map by grid method and counting algorithm. However, these approaches are occasionally ineffective since the density of LiDAR layer is low. Our approach solved this problem by applying probability theory. First, we converted all LiDAR point to Gaussian distribution to considers an uncertainty of LiDAR point. This Gaussian distribution represents likelihood of obstacle. Second, we modeled dynamic transition of a static obstacle map by adopting the Hidden Markov Model. Due to the dynamic characteristics of the vehicle in relation to the conditions of the next stage only, a more accurate map of the obstacles can be obtained using the Hidden Markov Model. Experimental data obtained from test driving demonstrates that our approach is suitable for mapping static obstacles. In addition, this result shows that our algorithm has an advantage in estimating not only static obstacles but also dynamic characteristics of moving target such as driving vehicles.

도심 자율주행을 위한 라이다 정지 장애물 지도 기반 위치 보정 알고리즘 (LiDAR Static Obstacle Map based Position Correction Algorithm for Urban Autonomous Driving)

  • 노한석;이현성;이경수
    • 자동차안전학회지
    • /
    • 제14권2호
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents LiDAR static obstacle map based vehicle position correction algorithm for urban autonomous driving. Real Time Kinematic (RTK) GPS is commonly used in highway automated vehicle systems. For urban automated vehicle systems, RTK GPS have some trouble in shaded area. Therefore, this paper represents a method to estimate the position of the host vehicle using AVM camera, front camera, LiDAR and low-cost GPS based on Extended Kalman Filter (EKF). Static obstacle map (STOM) is constructed only with static object based on Bayesian rule. To run the algorithm, HD map and Static obstacle reference map (STORM) must be prepared in advance. STORM is constructed by accumulating and voxelizing the static obstacle map (STOM). The algorithm consists of three main process. The first process is to acquire sensor data from low-cost GPS, AVM camera, front camera, and LiDAR. Second, low-cost GPS data is used to define initial point. Third, AVM camera, front camera, LiDAR point cloud matching to HD map and STORM is conducted using Normal Distribution Transformation (NDT) method. Third, position of the host vehicle position is corrected based on the Extended Kalman Filter (EKF).The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment and showed better performance than only lane-detection algorithm. It is expected to be more robust and accurate than raw lidar point cloud matching algorithm in autonomous driving.

철도차량의 충돌 시뮬레이션을 위한 유압 완충기의 특성 맵 (Characteristic Map of Hydraulic Buffer for Collision Simulation of Rolling Stock)

  • 김진성;최정흠;박영일
    • 한국안전학회지
    • /
    • 제31권1호
    • /
    • pp.41-47
    • /
    • 2016
  • The rolling stock is composed of several cars. In order to operate in combination, it is necessary to connect the device, called coupler, between the rolling stocks. When the collision occurs between cars, couplers should be able to absorb the shock. Urban railway has used only rubber absorbers. But recently, the hydraulic buffer has been considered in general railway. In order to know the performance of the buffer it should be conducted to experiments. But whenever this combination change, we should experiments to know a lot of the dynamic behavior of each coupler. These experiments are generally replaced by the simulation, since a lot of time and cost consuming. The quasi-static map of hydraulic buffer obtained by the experiments is required for the simulation. However, the experiments for obtaining such a quasi-static map is costly and time consuming. In this paper, it proposes a method for deriving the quasi-static map of hydraulic buffer from the theoretical model.

GIS를 이용한 정적 자연환경인자의 분석에 의한 산사태 취약성 평가 (An Estimation of Landslide's Vulnerability by Analysis of Static Natural Environmental Factors with GIS)

  • Yang, In-Tae
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 한국지형공간정보학회 2005년도 아시아 태평양 국제 GSIS 학술발표회
    • /
    • pp.61-72
    • /
    • 2005
  • The landslide risk assessment process consists of hazard risk assessment and vulnerability analysis. landslide hazard risk is location dependent. Therefore, maps and spatial technologies such as GIS are very important components of the risk assessment process. This paper discusses the advantages of using GIS technology in the risk assessment process and illustrates the benefits through case studies of live projects undertaken. The goal of this study is to generate a map of landslide vulnerability map by analysis of static natural factors with GIS. A simple and efficient algorithm is proposed to generate a landslide potentialities map from DEM and existing maps. The categories of controlling factors for landslides, aspect of slope, soil, vegetation are defined. The weight values for landslide potentialities are calculated from AHP method. Slope and slope-direction are extracted from DEM, and soil informations are extracted from digital soil map. Also, vegetation informations are extracted from digital vegetation map. Finally, as overlaying, landslide potentialities map is made out, and it is verified with landslide place.

  • PDF

도심자율주행을 위한 라이다 정지 장애물 지도 기반 차량 동적 상태 추정 알고리즘 (LiDAR Static Obstacle Map based Vehicle Dynamic State Estimation Algorithm for Urban Autonomous Driving)

  • 김종호;이호준;이경수
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.14-19
    • /
    • 2021
  • This paper presents LiDAR static obstacle map based vehicle dynamic state estimation algorithm for urban autonomous driving. In an autonomous driving, state estimation of host vehicle is important for accurate prediction of ego motion and perceived object. Therefore, in a situation in which noise exists in the control input of the vehicle, state estimation using sensor such as LiDAR and vision is required. However, it is difficult to obtain a measurement for the vehicle state because the recognition sensor of autonomous vehicle perceives including a dynamic object. The proposed algorithm consists of two parts. First, a Bayesian rule-based static obstacle map is constructed using continuous LiDAR point cloud input. Second, vehicle odometry during the time interval is calculated by matching the static obstacle map using Normal Distribution Transformation (NDT) method. And the velocity and yaw rate of vehicle are estimated based on the Extended Kalman Filter (EKF) using vehicle odometry as measurement. The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment, and is verified with data obtained from actual driving on urban roads. The test results show a more robust and accurate dynamic state estimation result when there is a bias in the chassis IMU sensor.

카오틱 맵을 이용한 위상 최적화 알고리즘의 수렴속도 향상 (Improvement of Topology Algorithm's Convergence Rate Using Chaotic Map)

  • 김용호;김기철;이재환;장효재;한석영
    • 한국생산제조학회지
    • /
    • 제23권3호
    • /
    • pp.279-283
    • /
    • 2014
  • Recently, a topology algorithm based on the artificial bee colony algorithm (ABCA) has been proposed for static and dynamic topology optimization. From the results, the convergence rate of the algorithm was determined to be slightly slow. Therefore, we propose a new search method to improve the convergence rate of the algorithm using a chaotic map. We investigate the effect of the chaotic map on the convergence rate of the algorithm in static and dynamic topology optimization. The chaotic map has been applied to three cases, namely, employ bee search, onlooker bee search, and both employ bee as well as onlooker bee search steps. It is verified that the case in which the logistic function of the chaotic map is applied to both employ bee as well as onlooker bee search steps shows the best dynamic topology optimization, improved by 5.89% compared to ABCA. Therefore, it is expected that the proposed algorithm can effectively be applied to dynamic topology optimization to improve the convergence rate.

차선 유실구간 측위를 위한 레이저 스캐너 기반 고정 장애물 탐지 알고리즘 개발 (Laser Scanner based Static Obstacle Detection Algorithm for Vehicle Localization on Lane Lost Section)

  • 서호태;박성렬;이경수
    • 자동차안전학회지
    • /
    • 제9권3호
    • /
    • pp.24-30
    • /
    • 2017
  • This paper presents the development of laser scanner based static obstacle detection algorithm for vehicle localization on lane lost section. On urban autonomous driving, vehicle localization is based on lane information, GPS and digital map is required to ensure. However, in actual urban roads, the lane data may not come in due to traffic jams, intersections, weather conditions, faint lanes and so on. For lane lost section, lane based localization is limited or impossible. The proposed algorithm is designed to determine the lane existence by using reliability of front vision data and can be utilized on lane lost section. For the localization, the laser scanner is used to distinguish the static object through estimation and fusion process based on the speed information on radar data. Then, the laser scanner data are clustered to determine if the object is a static obstacle such as a fence, pole, curb and traffic light. The road boundary is extracted and localization is performed to determine the location of the ego vehicle by comparing with digital map by detection algorithm. It is shown that the localization using the proposed algorithm can contribute effectively to safe autonomous driving.

소규모 지역에서 수치지도의 위치정확도 향상 방안에 관한 연구 (The Improvement Method of Position Accuracy of Digital-Map in Small Area)

  • 이근상;장영률
    • Spatial Information Research
    • /
    • 제9권2호
    • /
    • pp.263-275
    • /
    • 2001
  • NGIS 사업으로 구축된 1/1,000 수치지도의 활용이 급증하면서 이를 활용하기에 앞서 수치지도의 위치정확도 검증이라는 문제가 대두되고 있다. 본 연구에서는 학교 시설물관리시스템 구축에 기반이 되는 소규모 지역에 대한 1/1,000 수치지도의 위치 정확도를 평가하고, 위치오차가 발생한 지역에 대한 수치지도 수정/갱신 방안을 제시하였다. RTK방법으로 교내 주요건물에 대한 위치오차를 평가해 볼 때, 측량관계법령에서 규정하고 있는 0.5mm 보다 크게 나타났다. 이에 대한 위치정확도 확보방안으로 먼저, 교내에 Static 측량을 실시하여 측량기준점을 선정한 후 기준점으로부터 주요건물에 대한 좌표값을 평가하여 RTK 방법으로 측량한 좌표값과 비교하였다. 두 번째로는 지도를 변환하였으며 그 결과를 RTK 측량성과와 비교하였다. 첫 번째 방법과 두 번째 방법을 검토하여 소규모 적합한 수치지도 위치정확도 확보방안을 제시하였다.

  • PDF

정적 및 동적 range 검출에 의한 원료 처리 자동화용 vision 시스템 (A vision system for autonomous material handling by static and dynamic range finding)

  • 안현식;최진태;이관희;신기태;하영호
    • 전자공학회논문지S
    • /
    • 제34S권10호
    • /
    • pp.59-70
    • /
    • 1997
  • Until now, considerable progress has been made in the application of range finding techanique performing direct 3-D measurement from the object. However, ther are few use of the method in the area of the application of material handing. We present a range finding vision system consisting of static and dynamic range finders to automate a reclaimer used for material handling. A static range finder detects range data of the front part of the piles of material, and a height map is obtained from the proposed image processing algorithm. The height map is used to calculate the optimal job path as features for required information for material handling function. A dynamic range finder attached on the side of the arm of the reclaimer detects the change of the local properties of the material with the handling function, which is used for avoiding collision and detecting the ending point for changing direction. the developed vision systm was applied to a 1/20 simulator and the results of test show that it is appropriate to use for automating the material handling.

  • PDF

동적 환경하에서의 이동로봇을 위한 언어지도 기반 운항계획 (Linguistic Map-based Navigational Planning for Mobile Robots on Dynamic Environment)

  • 서석태;이인근;권순학
    • 한국지능시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.396-401
    • /
    • 2004
  • 최근, 동적 환경 하에서 움직이는 이동로봇을 위한 인지에 기반 한 운항계획 방법론이 제안되었고, 이를 고정 장애물만이 존재하는 공간 속에서 모의 실험한 결과가 제시되었다 [1]. 본 논문에서는 이를 고정 장애물만이 아닌 시간적/공간적 장애물을 포함하는 동적 환경 하에서도 적용 가능한 방법으로 확장한 언어지도 기반 운항계획법을 제안하고, 제안된 알고리즘의 타당성 보이기 위하여 컴퓨터 모의실험 결과를 나타낸다.