• Title/Summary/Keyword: Static Friction Model

Search Result 89, Processing Time 0.024 seconds

Static and Dynamic Horizontal Earth Pressures against Vertical or Inclined Rigid Walls (연직 또는 경사진 강성벽체에 작용하는 정적 및 동적수평토압)

  • 김홍택
    • Geotechnical Engineering
    • /
    • v.6 no.2
    • /
    • pp.35-46
    • /
    • 1990
  • An analytical solution method is described to estimate the developed static and dynamic horizontal earth pressures behind a vertical or inclined rigid wall experiencing outward toranslational movement. The results predicted by the developed method of analysis are compared with chose from the experimental model testg on sandy. The comparisons show good agreements at various stases of wall movement. When the wall i9 inclined with a certain angle in the direction of the supported strand sass, the effects of reduction in developed static and dynamic horizontal earth pressures are also analyzed. Finally, results of analytical parametric study are presented to demonstrate the effects of various parameters, such as wall friction angle and internal strand friction angle.

  • PDF

Three-Dimensional Numerical Simulation on a Circular-to-Rectangular Transition Duct (Circular-to-Rectangular Transition Duct 에서의 3차원 유동장에 관한 연구)

  • Cho Soo-Yong;Son Ho-Jae
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.55-61
    • /
    • 1998
  • The purpose of this study is to compare the predictive behaviors of the extended $k-{\varepsilon}$ turbulence model and the standard $k-{\varepsilon}$ turbulence model. Grid dependency is tested with the H-type grid and the O-type grid. Computations have been performed for a circular-to-rectangular transition duct. Numerical results for several sections along the streamwise have been obtained to compare with experimental results. The Reynolds number is 390,000 based on the bulk velocity at the inlet. The computed axial velocity contours, transverse velocity profiles, static pressure contours, peripheral skin friction coefficient, and peripheral wall static pressure distributions have been compared with experimental results. The computed results obtained with the extended $k-{\varepsilon}$ turbulence model show better agreement with experimental results than those obtained with the standard $k-{\varepsilon}$ turbulence model. Comparing to the computed results obtained with the H-type grid and O-type grid, those with H-type grid agree well with experimental results.

  • PDF

Three-Dimensional Numerical Simulation within a Circular-to-Rectangular Transition Duct (Circular-to-Rectangular Transition Duct 내부의 3차원 유동장에 관한 연구)

  • Jo, Su-Yong;Jeong, Hui-Taek;Son, Ho-Jae
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.9-16
    • /
    • 1998
  • Predictive behaviors by the extended k-${\varepsilon}$ turbulence model and the standard k-${\varepsilon}$ turbulence model are compared. Grid dependency is tested with the H-type grid as well as the O-type grid. Computations have been performed on a circular-to-rectangular transition duct. The Reynolds number is 390,000 based on the bulk velocity at the inlet. The computed axial velocity contours, transverse velocity profiles, static pressure contours, peripheral skin friction coefficient, peripheral wall static pressure distributions and turbulence kinetic energy have been compared with experimental results. The computed results than those obtained with the standard k-${\varepsilon}$ turbulence model. Comparing to the computed results obtained with the H-type grid and O-type grid, those with H-type grid seem to agree well with experimental results.

  • PDF

Modeling, Identification and Control of a Redundant Planar 2-DOF Parallel Manipulator

  • Zhang, Yao-Xin;Cong, Shuang;Shang, Wei-Wei;Li, Ze-Xiang;Jiang, Shi-Long
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.559-569
    • /
    • 2007
  • In this paper, the dynamic controller design problem of a redundant planar 2-dof parallel manipulator is studied. Using the Euler-Lagrange equation, we formulate the dynamic model of the parallel manipulator in the joint space and propose an augmented PD controller with forward dynamic compensation for the parallel manipulator. By formulating the controller in the joint space, we eliminate the complex computation of the Jacobian matrix of joint angles with end-effector coordinate. So with less computation, our controller is easier to implement, and a shorter sampling period can be achieved, which makes the controller more suitable for high-speed motion control. Furthermore, with the combination of static friction model and viscous friction model, the active joint friction of the parallel manipulator is studied and compensated in the controller. Based on the dynamic parameters of the parallel manipulator evaluated by direct measurement and identification, motion control experiments are implemented. With the experiments, the validity of the dynamic model is proved and the performance of the controller is evaluated. Experiment results show that, with forward dynamic compensation, the augmented PD controller can improve the tracking performance of the parallel manipulator over the simple PD controller.

Wet adhesion and rubber friction in adhesive pads of insects

  • Federle, Walter
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.31-42
    • /
    • 2004
  • Many animals possess on their legs adhesive pads, which have undergone evolutionary optimization to be able to attach to variable substrates and to control adhesive forces during locomotion. Insect adhesive pads are either relatively smooth or densely covered with specialized adhesive hairs. Theoretical models predict that adhesion can be increased by splitting the contact zone into many microscopic, elastic subunits, which provides a functional explanation for the widespread 'hairy' design. In many hairy and all smooth attachment systems, the adhesive contact is mediated by a thin film of liquid secretion between the cuticle and the substrate. By using interference reflection microscopy (IRM), the thickness and viscosity of the secretion film was estimated in Weaver ants (Oecophylla smaragdina). 'Footprint' droplets deposited on glass are hydrophobic and form low contact angles. IRM of insect pads in contact showed that the adhesive liquid is an emulsion consisting of hydrophilic, volatile droplets dispersed in a persistent, hydrophobic phase. I tested predictions derived from film thickness and viscosity by measuring friction forces of Weaver ants on a smooth substrate. The measured friction forces were much greater than expected assuming a homogenous film between the pad and the surface. The findings indicate that the rubbery pad cuticle directly interacts with the substrate. To achieve intimate contact between the cuticle and the surface, secretion must drain away, which may be facilitated by microfolds on the surface of smooth insect pads. I propose a combined wet adhesion/rubber friction model of insect surface attachment that explains both the presence of a significant static friction component and the velocity-dependence of sliding friction.

  • PDF

Bearing Capacity of Model Open -Ended Steel Pipe Pile Driven into Sand Deposit (모래지반에 타입된 모형 개단강관 말뚝의 지지력 분석)

  • Baek, Gyu-Ho;Lee, Jong-Seop;Lee, Seung-Rae
    • Geotechnical Engineering
    • /
    • v.9 no.1
    • /
    • pp.31-44
    • /
    • 1993
  • Model tests in calibration chamber with open -ended steel pipe pile have been performed in sand deposit to clarify effect of soil plug on bearing capacity, load transfer mechanisms in soil plug, and behavior of soil plug under dynamic and static conditions. Model piles were devised so that bearing capacity of open -ended pile could be measured separately into outside skin friction, inside skin friction due to soil plug -pile interaction and end bearing force on the section of steel pipe pile. It may be concluded, form the test results, that the plugging level of open -ended pile is more correctily defined by specific recovery ratio, y, rather than by plug length ratio, PLR, and the major part of inside skin friction is generated within the range of three times as long as the inner diameter of the pile from the pile tip. The ratio of inside skin friction to total bearing capacity is much larger than that of outside skin friction to total bearing capacity. Therefore, the bearing capacity of pile could not be well predicted, unless the inside skin friction is properly taken into account.

  • PDF

Development of a New Inchworm Actuation System U sing Piezoelectric Shearing Actuators (전단압전가진기를 이용한 인치웜 가진시스템의 개발)

  • Lee, Sang-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.81-88
    • /
    • 2007
  • This paper presents the development of a new inchworm actuation system using the shearing deformation of the piezoelectric actuators. In this new actuation system, piezoelectric shearing/expanding actuators, an inertial mass and an advanced preload system are configured innovatively to generate the motion of an inertial mass. There are two modes in the new actuation system: (1) stick mode, and (2) clamp mode. In stick mode, the deformation of the piezoelectric shearing actuators drives an inertial mass by means of the friction force at their contact interface. On the other hand, in clamp mode, the piezoelectric expanding actuators provide the gripping force to an inertial mass and, as a result, eliminate its backward motion following the rapid backward deformation of the piezoelectric shearing actuators. To investigate the feasibility of the proposed new actuation system, the experimental system is built up, and the static performance evaluation and dynamic analysis are conducted. The open-loop performance of the linear motion of the proposed new actuation system is evaluated. In dynamic analysis, the mathematical model for the contact interface is established based on the LuGre friction model and the equivalent parameters are identified.

Rack Force Estimation Method using a Tire Mesh Model (TIRE MESH 모델을 활용한 랙추력 추정법 개발)

  • Kim, Minjun;Chang, Sehyun;Lee, Byungrim;Park, Youngdae;Cho, Hyunseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.130-135
    • /
    • 2014
  • In this paper, a new estimation method is proposed to calculate steering rack axial force using a 3 dimensional tire mesh model when a car is standing on the road. This model is established by considering changes of camber angle and contact patch between the tires and the ground according to steering angle. The steering rack bar axial force is estimated based on the static equilibrium equations of forces and moments. A tire friction force is supposed to act on the center point of the contact patch, and the proportional coefficient of friction depending on contact patch is suggested. Using the proposed estimation method, rack axial force sensitivity analysis is evaluated according to changes of suspension geometry. Then optimal motor power of Motor Driven Power Steering(MDPS) is evaluated using suggested rack forces.

Rotational Diffusion of Rhodomine 6G Molecule -Effect of Dielectric Friction in Alcohol Solvents- (Rhodamine 6G 분자의 회전 확산 -알코올 용매에서의 유전 마찰 효과-)

  • 고동섭
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.338-346
    • /
    • 1993
  • The rotational reorientation times of rhodamine 6G molecule were measured using a time-correlated single photon counting method. To explain the deviation of observed rotational reorientation times in alcohol solvents from the prediction of hydrodynamic model, the contribution of dielectric friction was considered. And the values of transition dipole moments in ground and excited states were estimated through the dielectric friction and the static spectroscopic data.

  • PDF

Mesoscale modelling of concrete for static and dynamic response analysis -Part 2: numerical investigations

  • Lu, Yong;Tu, Zhenguo
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.215-231
    • /
    • 2011
  • As a brittle and heterogeneous material, concrete behaves differently under different stress conditions and its bulk strength is loading rate dependent. To a large extent, the varying behavioural properties of concrete can be explained by the mechanical failure processes at a mesoscopic level. The development of a computational mesoscale model in a general finite element environment, as presented in the preceding companion paper (Part 1), makes it possible to investigate into the underlying mechanisms governing the bulk-scale behaviour of concrete under a variety of loading conditions and to characterise the variation in quantitative terms. In this paper, we first present a series of parametric studies on the behaviour of concrete material under quasi-static compression and tension conditions. The loading-face friction effect, the possible influences of the non-homogeneity within the mortar and ITZ phases, and the effect of randomness of coarse aggregates are examined. The mesoscale model is then applied to analyze the dynamic behaviour of concrete under high rate loading conditions. The potential contribution of the mesoscopic heterogeneity towards the generally recognized rate enhancement of the material compressive strength is discussed.