• Title/Summary/Keyword: Static Equivalent Force Analysis

Search Result 76, Processing Time 0.033 seconds

Nonlinear Static Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects (큰 가로세로비를 가지는 날개의 대변형 효과를 고려한 비선형 정적 공탄성 해석)

  • Yu, Jae-Han;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.31-36
    • /
    • 2006
  • In this study, nonlinear static aeroelastic analysis system for a high-aspect-ratio wing are developed using the transonic small disturbance (TSD) and large deflection beam theory and validated. For the coupling between fluid and structure, the transformation of displacement from the structural mesh to aerodynamic one is performed by the shape function of the beam finite element and the inverse transformation of force by work equivalent load concept. Also, for the static aeroelastic analysis of the wing the use of TSD aerodynamics are justified. The validation of the system includes one of the efficient transformation methods of force and displacement.

Formulation, Measurement and Analysis for the Static Thrust of LPM (LPM의 정추력 정량화 및 측정 분석)

  • Kim D.H.;Bae D.K.;Kim K.H.;Park H.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.304-307
    • /
    • 2003
  • Usually, the thrust of a Linear Pulse Motor(LPM) is calculated by magnetic equivalent circuit modelling method. Analytical thrust deviation exists to calculating magnetic flux density by using Permeance Modelling Method, Finite Element Method, and Velocity Electric Motive Force method. For calculating accuracy thrust by using these every method, tire thrust is calculated and compared by Lorentz Force method, Magnetic coenergy Method, and Maxwell correspondence forte Method. And that becomes Important factor at the comparison of each capacity and parameter of motor. So this study wants to compare and analyze measurement data and calculating data of the static thrust of LPM. and then we can get more accuracy method, calculating the static thrust of LPM.

  • PDF

Advanced Analysis of Connections to Concrete-Filled Steel Tube Columns using the 2005 AISC Specification (AISC 2005 코드를 활용한 콘크리트 충전 합성기둥의 해석과 평가)

  • Park, Ji-Woong;Rhee, Doo-Jae;Chang, Suong-Su;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.9-21
    • /
    • 2012
  • Concrete filled steel tube (CFT) columns have been widely used in moment resisting frame structures both in seismic zones. This paper discusses the design of such members based on the advanced methods introduced in the 2005 AISC Specification and the 2005 Seismic Provisions. This study focuses particularly on design following both linear and nonlinear methods utilizing equivalent static and dynamic loads for low-rise moment frames. The paper begins with an examination of the significance of pseudo-elastic design interaction equations and the plastic ductility demand ratios due to combined axial compressive force and bending moment in CFT members. Based on advanced computational simulations for a series of five-story composite moment frames, this paper then investigates both building performance and new techniques to evaluate building damage during a strong earthquake. It is shown that 2D equivalent static analyses can provide good design approximations to the force distributions in moment frames subjected to large inelastic lateral loads. Dynamic analyses utilizing strong ground motions generally produce higher strength ratios than those from equivalent static analyses, but on more localized basis. In addition, ductility ratios obtained from the nonlinear dynamic analysis are sufficient to detect which CFT columns undergo significant deformations.

A Study on the Dynamic Simulation of High Speed Current Collection System (고속 집전계의 동적 수치모의해석 프로그램 연구)

  • Hur, S.;Kyung, J.H.;Song, D.H.;Kim, J.S.;Cho, Y.H.
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.1
    • /
    • pp.10-17
    • /
    • 2002
  • In this study, we have developed the static and dynamic simulation program of a high speed current collection system. The catenary wire is modeled to discrete masses connected by massless strings and the pantograph is replaced with 3 d.o.f equivalent models that are composed of masses, springs and dampers. We derived partial differential equations of motion from the equivalent model and developed the simulation program. Then, we calculated the static equilibrium state of the overhead catenary and the dynamic behaviors of the high speed current collection system. The analysis results were compared with the results of GASENDO software developed at RTRI in Japan.

Dynamic and static structure analysis of the Obermeyer gate under overflow conditions

  • Feng, Jinhai;Zhou, Shiyue;Xue, Boxiang;Chen, Diyi;Sun, Guoyong;Li, Huanhuan
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.209-217
    • /
    • 2022
  • In order to analyze the static and dynamic structural characteristics of the Obermeyer gate under overflow conditions, the force characteristics and vibration characteristics of the shield plate structure are studied based on the fluid-solid coupling theory. In this paper, the effects of the flow rate, airbag pressure and overflow water level on the structural performance of shield plate of air shield dam are explored through the method of controlling variables. The results show that the maximum equivalent stress and total deformation of the shield plate decrease first and then increase with the flow velocity. In addition, they are positively correlated with the airbag pressure. What's more, we find that the maximum equivalent stress of the shield plate decreases first and then increases with the overflow water level, and the total deformation of the shield plate decreases with the overflow water level. What's more importantly, the natural frequency of the shield structure of the Obermeyer gate is concentrated at 50 Hz and 100 Hz, so there is still the possibility of resonance. Once the resonance occurs, the free edge of the shield vibrates back and forth. This work may provide a theoretical reference for the safe and stable operation of the shield of the Obermeyer gate.

Nonlinear Response Structural Optimization of a Spacer Grid Spring for a Nuclear Fuel Rod Using the Equivalent Loads (등가하중을 이용한 원자로 핵연료봉 지지격자 스프링의 비선형 응답 구조 최적설계)

  • Kim, Do-Won;Lee, Hyun-Ah;Song, Ki-Nam;Kim, Yong-ll;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1165-1172
    • /
    • 2007
  • The spacer grid set is a part of a nuclear fuel assembly. The set has a spring and the spring supports the fuel rods safely. Although material nonlinearity is involved in the deformation of the spring, nonlinearity has not been considered in design of the spring. Recently a nonlinear response structural optimization method has been developed using equivalent loads. It is called nonlinear response optimization equivalent loads (NROEL). In NROEL, the external loads are transformed to the equivalent loads (EL) for linear static analysis and linear response optimization is carried out based on the EL in a cyclic manner until the convergence criteria are satisfied. EL is the load set which generates the same response field of linear analysis as that of nonlinear analysis. Shape optimization of the spring is carried out based on EL. The objective function is defined by minimizing the maximum stress in the spring while mass is limited and the support force of the spring is larger than a certain value. The results are verified by nonlinear response analysis. ABAQUS is used for nonlinear response analysis and GENESIS is employed for linear response optimization.

Fluid-structure interaction of a tensile fabric structure subjected to different wind speeds

  • Valdes-Vazquez, Jesus G.;Garcia-Soto, Adrian D.;Hernandez-Martinez, Alejandro;Nava, Jose L.
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.533-548
    • /
    • 2020
  • Despite the current technologic developments, failures in existent tensile fabric structures (TFS) subjected to wind do happen. However, design pressure coefficients are only obtained for large projects. Moreover, studies on TFSs with realistic supporting frames, comparing static and dynamic analyses and discussing the design implications, are lacking. In this study, fluid-Structure analyses of a TFS supported by masts and inclined cables, by subjecting it to different wind speeds, are carried out, to gain more understanding in the above-referred aspects. Wind-induced stresses in the fabric and axial forces in masts and cables are assessed for a hypar by using computational fluid dynamics. Comparisons are carried out versus an equivalent static analysis and also versus loadings deemed representative for design. The procedure includes the so-called form-finding, a finite element formulation for the TFS and the fluid formulation. The selected structure is deemed realistic, since the supporting frame is included and the shape and geometry of the TFS are not uncommon. It is found that by carrying out an equivalent static analysis with the determined pressure coefficients, differences of up to 24% for stresses in the fabric, 5.4% for the compressive force in the masts and 21% for the tensile force in the cables are found with respect to results of the dynamic analysis. If wind loads commonly considered for design are used, significant differences are also found, specially for the reactions at the supporting frame. The results in this study can be used as an aid by designers and researchers.

A Study on the Static Rigidity of the End Mill (엔드밀의 정적 강성에 관한 연구)

  • 이상규;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.9-14
    • /
    • 1996
  • The deflection of an end mill is very important in machining process and cutting simulation because it affects directly workpiece accuracy, cutting force, and chattering. In this study, the deflection of the end mill was studied both experimentally and by using finite element analysis. And the moment of inertia of radial cross sections of tile helical end mill is calculated for the determination of the relation between cross section and rigidity of tile tools. Using tile Bernoulli-Euler beam and and the concept of equivalent diameter, a deflection model is established, which includes most influence from tool geomety parameters. It was found that helix angle attenuates the rigidity of the end mill.

  • PDF

Extracting Seismic Reinforcement Priorities to Promote Safety at Airmen Dormitories Using DEA (DEA 기법을 이용한 공군 병영생활관 내진보강 우선순위 도출)

  • Park, Keunwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.697-704
    • /
    • 2019
  • The public has grown more anxious towards domestic earthquakes that have been taking place since 2000, and regulations on seismic design has been strengthened. Out of 4,605 Air Force installations that require the application of seismic design, 2,982 remain unapplied. By taking budget issues and the time spent to implement seismic retrofit into account, this paper aims to list up seismic reinforcement priorities for airmen dormitories where they can potentially be most vulnerable to earthquakes. The priorities are extracted based on Data Envelope Analysis(DEA). To apply DEA, two sets of variables are set: seismic reinforcement costs as input variable: age of building, number of residents, and seismic load as output variables. At the end, suggestions are made for developing seismic reinforcement plans that can be applied to all Air Force installations.

Equivalent Model Dynamic Analysis of Main Wing Assembly for Optionally Piloted Personal Air Vehicle (자율비행 개인항공기용 주익 조립체 등가모델 동특성 해석)

  • Kim, Hyun-gi;Kim, Sung Jun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.72-79
    • /
    • 2021
  • In this study, as part of the development of an autonomous flying personal aircraft, an equivalent model of the main wing assembly of an Optionally Piloted Personal Air Vehicle (OPPAV) was developed. Reliability of the developed equivalent model was verified by eigenvalue analysis. The main wing assembly consisted of a main wing, an inboard pod, and an outboard pod. First, for developing an equivalent model of each component, components to produce the equivalent model were divided into several sections. Nodes were then created on the axis of the equivalent model at both ends of each section. In addition, static analysis with unit force and unit moment was performed to calculate the deformation or the amount of rotation at the node to be used in the equivalent model. Equivalent axial, bending, and torsional stiffness of each section were calculated by applying the beam theory. Once the equivalent stiffness of each section was calculated, information of a mass and moment of inertia for each section was entered by creating a lumped mass in the center of each section. An equivalent model was developed using beam element. Finally, the reliability of the developed equivalent model was verified by comparison with results of mode analysis of the fine model.