• Title/Summary/Keyword: Static Efficiency

Search Result 734, Processing Time 0.027 seconds

Axial impact behavior of confined concrete filled square steel tubes using fiber reinforced polymer

  • Zhang, Yitian;Shan, Bo;Kang, Thomas H.K.;Xiao, Yan
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.165-176
    • /
    • 2021
  • Existing research on confined concrete filled steel tubular (CCFT) columns has been mainly focused on static or cyclic loading. In this paper, square section CCFT and CFT columns were tested under both static and impact loading, using a 10,000 kN capacity compression test machine and a drop weight testing equipment. Research parameters included bonded and unbonded fiber reinforced polymer (FRP) wraps, with carbon, basalt and glass FRPs (or CFRP, BFRP, and GFRP), respectively. Time history curves for impact force and steel strain observed are discussed in detail. Experimental results show that the failure modes of specimens under impact testing were characterized by local buckling of the steel tube and cracking at the corners, for both CCFT and CFT columns, similar to those under static loading. For both static and impact loading, the FRP wraps could improve the behavior and increase the loading capacity. To analyze the dynamic behavior of the composite columns, a finite element, FE, model was established in LS-DYNA. A simplified method that is compared favorably with test results is also proposed to predict the impact load capacity of square CCFT columns.

Static strengths of preloaded circular hollow section stub columns strengthened with carbon fiber reinforced polymer

  • Chen Wei;Yongbo Shao;Mostafa Fahmi Hassanein;Chuannan Xiong;Hongmei Zhu
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.455-466
    • /
    • 2023
  • To investigate the load bearing capacity of axially preloaded circular hollow section (CHS) stub columns strengthened by carbon fiber reinforced polymer (CFRP), theoretical analysis is carried out. The yield strength and the ultimate strength of a CFRP strengthened preloaded CHS stub column are determined at the yielding of the CHS tube and at the CFRP fracture, respectively. Theoretical models are proposed and corresponding equations for calculating the static strengths, including the yield strength and the ultimate strength, are presented. Through comparison with reported experimental results, the theoretical predictions on the static strengths are proved to be accurate. Through finite element (FE) analyses, parametric studies for 258 models of CFRP strengthened preloaded CHS stub columns are conducted by considering different values of tube diameter, tube thickness, CFRP layer and preloading level. The static strengths of the 258 models predicted from presented equations are proved to be in good agreement with FE simulations when the diameter-to-thickness ratio is less than 90ε2. The parametric study indicates that the diameter and the thickness of the steel tube have great effects on CFRP strengthening efficiency, and the recommended ranges of the diameter and the thickness are proposed.

The Experimental Comparison of Fault Detection Efficiency of Static Code Analysis Tools for Software RAMS (소프트웨어 RAMS를 위한 정적기법을 이용한 코드 결함 검출 효율성에 관한 실험적 비교)

  • Jang, Jeong-Hoon;Yun, Cha-Jung;Jang, Ju-Su;Lee, Won-Taek;Lee, Eun-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2493-2502
    • /
    • 2011
  • For Static analysis of software code, an experienced tester prefer detecting defects with using selective static technique. Many cases of static method have been reported such as coding rules, software metrics, defect data, etc. However, many of analysis case only present effectiveness of static analysis, not enough description for how the tester judged to classify code defects used in code analysis and removed them properly for ensure high quality. Occasionally, there are materials to show the effect of through some examples through some examples. But difficult to gain trust, because of not enough detail for application process. In this paper, introduced the static technique commonly used in railway and applied to the real development challenges. And the each of results were compared and analyzed. It is hard to generalize the results of this parer. But can be used and referenced as a case of study.

  • PDF

Structural Damage Detection Method Using Sensitivity Matrices (민감도행렬을 사용한 구조물의 손상추정법)

  • 윤정방;김두기
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.117-126
    • /
    • 1996
  • Damage detection methods using structural tests can be divided into two methods, i.e., static and dynamic. The static methods which use the stiffness properties of the structure are simpler than the dynamic methods. However, static approaches are very sensitive to the displacement measurement noises and modeling errors. The dynamic methods also have limitations in acquiring the natural frequencies and mode shapes of the high frequencies. In this study, a method for the structural damage assessment using sensitivity matrices is developed, in which the drawbacks of the static and dynamic methods can be compensated. Based on the measurement data for the static displacements and dynamic modal properties, the damage locations and the degree of damage are determined using the presented sensitivity matrix method. The efficiency of the proposed method has been examined through numerical simulation studies on truss type structures.

  • PDF

A Study on the Static and Dynamic Characteristics of Raised Girder Bridges (양각 거더교의 정적·동적특성에 관한 연구)

  • Ji-Yeon Lee;Sung Kim;Sung-Jin Park
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.851-858
    • /
    • 2023
  • Purpose: A study was conducted to ensure the structural safety of a raised girder bridge with improved cross-sectional efficiency compared to the conventional PSC girder. For this purpose, the cross-sectional specifications such as girder length, height, and width were determined, the arrangement of the tendons was designed, and the practical performance of the raised girder under static and dynamic loads was verified. Method: The static performance experiment examined the serviceability limit state by measuring behavioral responses such as deflection and cracking to primary and secondary static loads. In addition, the dynamic load loading experiment measured the acceleration and displacement behavior response over time to calculate the natural frequency and damping ratio to examine the usability limit state. Result: As a result of the static performance test, the deflection value based on the maximum applied load showed stable behavior, and the crack width measured at the maximum applied load level was very small, satisfying the serviceability limit state. In addition, a natural frequency exceeding the natural frequency calculated during the design of the dynamic loading experiment was found, and a damping ratio that satisfies the current regulations was found to be secured.

Transformation of Dynamic Loads into Equivalent Static Load based on the Stress Constraint Conditions (응력 구속조건을 고려한 동하중의 등가정하중으로의 변환)

  • Kim, Hyun-Gi;Kim, Euiyoung;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.165-171
    • /
    • 2013
  • Due to the difficulty in considering dynamic load in the view point of a computer resource and computing time, it is common that external load is assumed as ideal static loads. However, structural analysis under static load cannot guarantee the safety of design of the structures under dynamic loadings. Recently, the systematic method to construct equivalent static load from the given dynamic load has been proposed. Previous study has calculated equivalent static load through the optimization procedure under displacement constraints. However, previously reported works to distribute equivalent static load were based on ad-hoc methods. Improper selection of equivalent static loading positions may results in unreliable prediction of structural design. The present study proposes the selection method of the proper locations of equivalent static loads to dynamically applied loads when we consider transient dynamic structural problems. Moreover, it is appropriate to take into account the stress constraint as well as displacement constraint condition for the safety design. But the previously reported studies of equivalent static load design methods considered only displacement constraint conditions but not stress constraint conditions. In the present study we consider not only displacement constraint but also stress constraint conditions. Through a few numerical examples, the efficiency and reliability of proposed scheme is verified by comparison of the equivalent stress between equivalent static loading and dynamic loading.

Approximate calculation of the static analysis of a lifted stay cable in super-long span cable-stayed bridges

  • Zhao, Xinwei;Xiao, Rucheng;Sun, Bin
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.635-655
    • /
    • 2020
  • The sag effect of long stay cables is one of the key factors restricting further increase in the span of cable-stayed bridges. Based on the formerly proposed concept of long stay cables lifted by an auxiliary suspension cable in cross-strait cable-stayed bridges, corresponding static approximate calculations and analytical theory based on catenary and parabolic cable configurations are established. Taking a main span 1400 m cable-stayed bridge as the research object, three typical lifting conditions and the whole process of auxiliary cable lifting are analyzed and discussed. The results show that the sag effect is effectively reduced. The support efficiency is only improved when the cables are lifted above the original cable chord. Reduction of the horizontal component force of the cable is limited. The equivalent elastic modulus and the vertical support stiffness of the lifted cables are significantly increased with increased horizontal projection length and not sensitive to the change of the lifting point position. The scheme of lifting the cable to the chord midpoint is more economical because of the less steel required for the auxiliary suspension cable, but its effect on improving the vertical support efficiency is limited. The support efficiency is better when the cable is lifted to the cable end tangential to the original cable chord, but the lifting force and the cross-sectional area of the auxiliary suspension cable are doubled. The approximate calculation results of the lifted cables are very close to the numerical analysis results, which verifies the applicability of the approximation method proposed in this study. The results of parabolic approximation calculations are approximately equal to that of catenary cable geometry. As the parabolic approximation analysis theory of lifted cables is more convenient in mathematical processing, it is feasible to use parabolic approximation analysis theory as the analytical method for the conceptual design of lifted cables of super-long span cable-stayed bridges.

Development of a Low Pressure Auxiliary Fan for Local Large-opening Limestone Mines (대단면국내석회석광산용저풍압국부선풍기개발연구)

  • Lee, Chang Woo;Nguyen, Van Duc
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.543-555
    • /
    • 2015
  • At present, local limestone mines with large opening employ auxiliary fans for workplace ventilation which have been used in coal mines with much smaller airways. Considering the low static pressure loss in the large-opening mines, high pressure auxiliary fans face serious economical limitations mainly due to their excessive capacity. The optimal fan selected for the ventilation in large-opening working places should supply air quantity enough for maintaining safe environment and keep its operating cost as low as possible. This study focuses on the development of a low pressure auxiliary fan designed to have smaller range of the static head but to have more potential for higher ventilation and energy efficiency. The flow characteristics of high and low pressure auxiliary fans were theoretical as well as experimentally investigated to assess the ventilation efficiency in term of environmental and economical aspects. Moreover, the low pressure fan was tested in two limestone mine sites with small and large cross-sectional areas for evaluating its ventilation efficiency. Results from this study can be applied to improve the economy and efficiency of auxiliary fan for ensuring better air quality and work environment management.

Effect of Finger Profile on Static Bending Strength Performance of Finger-Jointed Wood

  • Park, Han-Min;Lee, Gyun-Pil;Kong, Tae-Suk;Ryu, Hyun-Soo;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.57-66
    • /
    • 2004
  • To study the efficient usage of small diameter logs and woods containing defects such as knots, slope of the grain and decay, six types of finger-jointed woods with various finger profiles were made of poplar, pine and oak with different density. We investigated the effect of finger profile on static bending strength performances of finger-jointed woods. The efficiency of bending MOE, MOR and deflection showed the highest value in poplar finger-jointed wood with the lowest density of three species, and the lowest value in oak finger-jointed wood with the highest density of three species. The values markedly decreased with increasing finger pitch for finger-jointed wood glued with polyvinyl acetate (PVAc) resin for all tested species, whereas for the finger-jointed wood glued with resorcinol-phenol formaldehyde (RPF) resin, the influence of finger pitch on the efficiency of MOE was not found in all tested species, and those on the efficiency of MOR and deflection indicated the same trend as finger-jointed wood glued with PVAc resin in the case of pine and oak finger-jointed wood with higher densities. It was found that the values tended to decrease with increasing density of species on the whole and the desirable finger pitches were L (6.8 mm) for poplar, M (4.4 mm) for pine and S (3.5 mm) for oak in a view of economy. For finger-jointed wood glued with PVAc resin, the fitness between a tip and a root width of a pair of fingers δ of 0.5 mm indicated the highest efficiency of MOE for all species. And, the influence of δ on MOR was only found in oak finger-jointed wood glued with RPF resin and the desirable δ value for oak was 0.1 mm. However, it was found that the influence of δ on the strength performance was very small.

A Study on Measuring the Efficiency of Global Ocean Carriers by Using Data Envelopment Analysis (DEA를 활용한 글로벌해운선사의 효율성측정)

  • Bang, Hee-Seok;Kang, Hyo-Won
    • Journal of Korea Port Economic Association
    • /
    • v.27 no.1
    • /
    • pp.213-234
    • /
    • 2011
  • The literature on efficiency of the maritime and shipping industry has typically focused on container ports and terminals. The study presented in this paper uses data envelopment analysis to evaluate ocean carriers based on financial and operational data from 2004 to 2007. A comparison is made up of the efficiency of global ocean carriers in efficiency of financial and operational performance respectively. A positive correlation is shown between the input and output data. In the static-efficiency analysis, we describe CCR, BCC and scale efficiency of Global Ocean Carriers in 2007. And we also provide about the stability and trend of their efficiency for four years (2004-2007) in the dynamic-efficiency analysis. The empirical results validate the necessity of restoring freight rates to facilitate the efficiency of the global ocean carriers supported by adjust of the supply of containership space. The study provides a basis for estimating the competitiveness of international shipping companies, for benchmarking best practice and for identifying the specific factors and causes of inefficiency.