• Title/Summary/Keyword: State-space vector

Search Result 180, Processing Time 0.019 seconds

Validation on Residual Variation and Covariance Matrix of USSTRATCOM Two Line Element

  • Yim, Hyeon-Jeong;Chung, Dae-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.287-293
    • /
    • 2012
  • Satellite operating agencies are constantly monitoring conjunctions between satellites and space objects. Two line element (TLE) data, published by the Joint Space Operations Center of the United States Strategic Command, are available as raw data for a preliminary analysis of initial conjunction with a space object without any orbital information. However, there exist several sorts of uncertainties in the TLE data. In this paper, we suggest and analyze a method for estimating the uncertainties in the TLE data through mean, standard deviation of state vector residuals and covariance matrix. Also the estimation results are compared with actual results of orbit determination to validate the estimation method. Characteristics of the state vector residuals depending on the orbital elements are examined by applying the analysis to several satellites in various orbits. Main source of difference between the covariance matrices are also analyzed by comparing the matrices. Particularly, for the Korea Multi-Purpose Satellite-2, we examine the characteristics of the residual variation of state vector and covariance matrix depending on the orbital elements. It is confirmed that a realistic consideration on the space situation of space objects is possible using information from the analysis of mean, standard deviation of the state vector residuals of TLE and covariance matrix.

TRILINEAR FORMS AND THE SPACE OF COMTRANS ALGEBRAS

  • IM, BOKHEE;SMITH, JONATHAN D.H.
    • Honam Mathematical Journal
    • /
    • v.27 no.4
    • /
    • pp.595-602
    • /
    • 2005
  • Comtrans algebras are modules equipped with two trilinear operations: a left alternative commutator and a translator satisfying the Jacobi identity, the commutator and translator being connected by the so-called comtrans identity. These identities have analogues for trilinear forms. On a given vector space, the set of all comtrans algebra structures itself forms a vector space. In this paper, the dimension of the space of comtrans algebra structures on a finite-dimensional vector space is determined.

  • PDF

GENERIC SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR OF A SASAKIAN SPACE FORM

  • Ahn, Seong-Soo;Ki, U-Hang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.215-236
    • /
    • 1994
  • The purpose of the present paper is to study generic submanifolds of a Sasakian space form with nonvanishing parallel mean curvature vector field such that the shape operator in the direction of the mean curvature vector field commutes with the structure tensor field induced on the submanifold. In .cint. 1 we state general formulas on generic submanifolds of a Sasakian manifold, especially those of a Sasakian space form. .cint.2 is devoted to the study a generic submanifold of a Sasakian manifold, which is not tangent to the structure vector. In .cint.3 we investigate generic submanifolds, not tangent to the structure vector, of a Sasakian space form with nonvanishing parallel mean curvature vactor field. In .cint.4 we discuss generic submanifolds tangent to the structure vector of a Sasakian space form and compute the restricted Laplacian for the shape operator in the direction of the mean curvature vector field. As a applications of these, in the last .cint.5 we prove our main results.

  • PDF

A Linear Reservoir Model with Kslman Filter in River Basin (Kalman Filter 이론에 의한 하천유역의 선형저수지 모델)

  • 이영화
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.349-356
    • /
    • 1994
  • The purpose of this study is to develop a linear reservoir model with Kalman filter using Kalman filter theory which removes a physical uncertainty of :ainfall-runoff process. A linear reservoir model, which is the basic model of Kalman filter, is used to calculate runoff from rainfall in river basin. A linear reservoir model with Kalman filter is composed of a state-space model using a system model and a observation model. The state-vector of system model in linear. The average value of the ordinate of IUH for a linear reservoir model with Kalman filter is used as the initial value of state-vector. A .linear reservoir model with Kalman filter shows better results than those by linear reserevoir model, and decreases a physical uncertainty of rainfall-runoff process in river basin.

  • PDF

A Transient Dynamic Response Analysis in the State-Space Applying the Average Velocity (평균속도 개념을 적용한 상태공간에서의 과도동적응답 해석)

  • 이안성;김병옥;김영철;김영춘
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.465-470
    • /
    • 2003
  • In this study, the state-space Newmark method based on average velocity is presented to analyse the transient dynamic response for general dynamic system. The conventional Newmark method based on average acceleration cannot he directly to the first-order state-space differential equations introducing the state-space vector. To overcome this problem, the time-step integration algorithm, based on average velocity concept, suitable for the first-order state-space differential equations is proposed In results, the proposed method has %he numerical stability and order of accuracy, which is proved analytically, equal to those of the conventional Newmark method based on average acceleration. Also, the formulation for numerical solution is very simple and the calculation time Is nearly equal to that of the conventional Newmark method based on average acceleration in spite of an increase of two times over matrix size. This method will be look forward to applying the general dynamic system to calculate the transient dynamic response.

  • PDF

An application study of the optimal multi-variable structure control to the state space model of the robot system (로보트 시스템의 State space 모델에 대한 최적 다중-변화 구조제어의 응용연구)

  • 이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.321-325
    • /
    • 1986
  • A new control scheme for the state space model of the robot system using the theory of optimal multi-variable structure is presented in this paper. It is proposed to optimize multi-dimensional variable structure systems for obtaining the required stabilizing signal by minimizing a performance index with respect to the state vector in the sliding mode. It is concluded the proposed variable structure controller yields better system dynamic performance than that obtained by using the only linear optimal controller inthat responses for a step disturbance have a shorter setting time, no matter what overshoot values and rising time.

  • PDF

Direct Stator Flux Vector Control Strategy for IPMSM using a Full-order State Observer

  • Yuan, Qingwei;Zeng, Zhiyong;Zhao, Rongxiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.236-248
    • /
    • 2017
  • A direct stator flux vector control scheme in discrete-time domain is proposed in this paper for the interior permanent magnet synchronous motor (IPMSM) drive to remove the proportional-integral (PI) controller from the direct torque control (DTC) scheme applied to IPMSM and to obtain faster dynamic response and lower torque ripple output. The output of speed outer loop is used as the desired torque angle instead of the desired torque in the proposed scheme. The desired stator flux vector in dq coordinate is calculated with a given amplitude. The state-space equations in discrete-time for IPMSM are established, the actual stator flux vector is estimated in deadbeat manner by a full-order state observer, and then the closed-loop control is achieved by the pole placement. The stator flux error vector is utilized to calculate the reference stator voltage vector. Extracting the angle position and amplitude from the estimated stator flux vector and estimating the output torque are eliminated for the direct feedback control of the stator flux vector. The proposed scheme is comparatively investigated with a PI-SVM DTC scheme by experiment results. Experimental results show the feasibility and advantages of the proposed control scheme.

The Space Vector Detection based Three-Phase Hybrid Series Active Power Filter for Compensating Dynamic Voltage Sag and Harmonic Current (순시전압 sag 및 고조파 전류 보상을 위한 공간벡터 검출법 기반의 3상 하이브리드 직렬형 능동전력필터)

  • 양승환;정영국;임영철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.303-310
    • /
    • 2004
  • In this paper, for compensating dynamic voltage sag and harmonic current, 3-phase hybrid series active power filter based on the space vector detection is proposed. The Space vector algorithm for detecting the voltage sag and the harmonic current in compared with conventional theory is a simple method for calculating the compensating reference without any coordinated transformation. The effectiveness of the proposed system is verified by the PSIM simulation in the steady state and the transient state, which the proposed system is able to simultaneously compensate harmonics and source voltage unbalance / sag.

함수 공간 적분에 관한 소고(II)

  • 장주섭
    • Journal for History of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.65-72
    • /
    • 2000
  • In this paper we treat the Yeh-Wiener integral and the conditional Yeh-Wiener integral for vector-valued conditioning function which are examples of the function space integrals. Finally, we state the modified conditional Yeh-Wiener integral for vector-valued conditioning function.

  • PDF

Cointegration Analysis with Mixed-Frequency Data of Quarterly GDP and Monthly Coincident Indicators

  • Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.6
    • /
    • pp.925-932
    • /
    • 2012
  • The article introduces a method to estimate a cointegrated vector autoregressive model, using mixed-frequency data, in terms of a state-space representation of the vector error correction(VECM) of the model. The method directly estimates the parameters of the model, in a state-space form of its VECM representation, using the available data in its mixed-frequency form. Then it allows one to compute in-sample smoothed estimates and out-of-sample forecasts at their high-frequency intervals using the estimated model. The method is applied to a mixed-frequency data set that consists of the quarterly real gross domestic product and three monthly coincident indicators. The result shows that the method produces accurate smoothed and forecasted estimates in comparison to a method based on single-frequency data.