• Title/Summary/Keyword: State space equation

Search Result 301, Processing Time 0.022 seconds

Real Time Estimation of Temperature Distribution of a Ball Screw System Using Modal Analysis and Observer (모드해석과 관측기에 의한 볼스크류 온도분포의 실시간 예측)

  • An, Jung-Yong;Kim, Tae-Hun;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.145-152
    • /
    • 2001
  • Thermal deformation of a machine tool structure can be evaluated from the analysis of the whole temperature field. However, it is extremely inefficient and impossible to know the whole temperature field by measuring temperatures at every point. So, the temperature estimator is required, which can predict the whole temperature field from the temperatures of just a few points. In this paper, a 1-dimensional heat transfer problem is modeled with modal analysis and state space equations. And then the state observer is designed to estimate the intensity of heat source and the whole temperature field in real time. The reliability of the estimator is verified by making comparison between solutions obtained from the proposed method and the exact solutions of examples. The proposed method is applied to the estimation of temperature distribution in a ball screw system.

Precise attitude determination strategy for spacecraft based on information fusion of attitude sensors: Gyros/GPS/Star-sensor

  • Mao, Xinyuan;Du, Xiaojing;Fang, Hui
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • The rigorous requirements of modern spacecraft missions necessitate a precise attitude determination strategy. This paper mainly researches that, based on three space-borne attitude sensors: 3-axis rate gyros, 3-antenna GPS receiver and star-sensor. To obtain global attitude estimation after an information fusion process, a feedback-involved Federated Kalman Filter (FKF), consisting of two subsystem Kalman filters (Gyros/GPS and Gyros/Star-sensor), is established. In these filters, the state equation is implemented according to the spacecraft's kinematic attitude model, while the residual error models of GPS and star-sensor observed attitude are utilized, to establish two observation equations, respectively. Taking the sensors' different update rates into account, these two subsystem filters are conducted under a variable step size state prediction method. To improve the fault tolerant capacity of the attitude determination system, this paper designs malfunction warning factors, based on the principle of ${\chi}^2$ residual verification. Mathematical simulation indicates that the information fusion strategy overwhelms the disadvantages of each sensor, acquiring global attitude estimation with precision at a 2-arcsecs level. Although a subsystem encounters malfunction, FKF still reaches precise and stable accuracy. In this process, malfunction warning factors advice malfunctions correctly and effectively.

Design of nonlinear optimal regulators using lower dimensional riemannian geometric models

  • Izawa, Yoshiaki;Hakomori, Kyojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.628-633
    • /
    • 1994
  • A new Riemannian geometric model for the controlled plant is proposed by imbedding the control vector space in the state space, so as to reduce the dimension of the model. This geometric model is derived by replacing the orthogonal straight coordinate axes on the state space of a linear system with the curvilinear coordinate axes. Therefore the integral manifold of the geometric model becomes homeomorphic to that of fictitious linear system. For the lower dimensional Riemannian geometric model, a nonlinear optimal regulator with a quadratic form performance index which contains the Riemannian metric tensor is designed. Since the integral manifold of the nonlinear regulator is determined to be homeomorphic to that of the linear regulator, it is expected that the basic properties of the linear regulator such as feedback structure, stability and robustness are to be reflected in those of the nonlinear regulator. To apply the above regulator theory to a real nonlinear plant, it is discussed how to distort the curvilinear coordinate axes on which a nonlinear plant behaves as a linear system. Consequently, a partial differential equation with respect to the homeomorphism is derived. Finally, the computational algorithm for the nonlinear optimal regulator is discussed and a numerical example is shown.

  • PDF

Partition method of wall friction and interfacial drag force model for horizontal two-phase flows

  • Hibiki, Takashi;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1495-1507
    • /
    • 2022
  • The improvement of thermal-hydraulic analysis techniques is essential to ensure the safety and reliability of nuclear power plants. The one-dimensional two-fluid model has been adopted in state-of-the-art thermal-hydraulic system codes. Current constitutive equations used in the system codes reach a mature level. Some exceptions are the partition method of wall friction in the momentum equation of the two-fluid model and the interfacial drag force model for a horizontal two-phase flow. This study is focused on deriving the partition method of wall friction in the momentum equation of the two-fluid model and modeling the interfacial drag force model for a horizontal bubbly flow. The one-dimensional momentum equation in the two-fluid model is derived from the local momentum equation. The derived one-dimensional momentum equation demonstrates that total wall friction should be apportioned to gas and liquid phases based on the phasic volume fraction, which is the same as that used in the SPACE code. The constitutive equations for the interfacial drag force are also identified. Based on the assessments, the Rassame-Hibiki correlation, Hibiki-Ishii correlation, Ishii-Zuber correlation, and Rassame-Hibiki correlation are recommended for computing the distribution parameter, interfacial area concentration, drag coefficient, and relative velocity covariance of a horizontal bubbly flow, respectively.

Computation of Unsteady Aerodynamic Forces in the Time Domain for GVT-based Ground Flutter Test (지상 플러터 실험을 위한 시간 영역에서의 비정상 공기력 계산)

  • Lee, Juyeon;Kim, Jonghwan;Bae, Jaesung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2016
  • Flutter wind-tunnel test is an expensive and complicated process. Also, the test model may has discrepancy in the structural characteristics when compared to those of the real model. "Dry Wind-Tunnel" (DWT) is an innovative testing system which consists of the ground vibration test (GVT) hardware system and software which computationally can be operated and feedback in real-time to yield rapidly the unsteady aerodynamic forces. In this paper, we study on the aerodynamic forces of DWT system to feedback in time domain. The aerodynamic forces in the reduced-frequency domain are approximated by Minimum-state approximation. And we present a state-space equation of the aerodynamic forces. With the two simulation model, we compare the results of the flutter analysis.

Inversion-Based Robust Output Tracking of Differentially Flat Nonlinear Systems

  • Joo, Jin-Man;Park, in-Bae;Park, Yoon-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • In this study, we propose a two degree of freedom robust output tracking control method for a class of nonlinear system. We consider hyperbolically nonminimum phase single-input single-output uncertain nonlinear systems. We also consider the case that the nominal input-state equation is differentially flat. Nominal stable state trajectory is obtained in the flat output space via the flat output. Nominal feedforward control input is also computed from the nominal state trajectory. Due to the nature of the method, the generated flat output trajectory and control input are noncausal. Robust feedback control is designed to stabilize the systems around the nominal trajectory. A numerical example is given is given to demonstrate that robust tracking is achieved.

  • PDF

[ $H_{\infty}$ ] Multi-Step Prediction for Linear Discrete-Time Systems: A Distributed Algorithm

  • Wang, Hao-Qian;Zhang, Huan-Shui;Hu, Hong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.135-141
    • /
    • 2008
  • A new approach to $H_{\infty}$ multi-step prediction is developed by applying the innovation analysis theory. Although the predictor is derived by resorting to state augmentation, nevertheless, it is completely different from the previous works with state augmentation. The augmented state here is considered just as a theoretical mathematic tool for deriving the estimator. A distributed algorithm for the Riccati equation of the augmented system is presented. By using the reorganized innovation analysis, calculation of the estimator does not require any augmentation. A numerical example demonstrates the effect in reducing computing burden.

Adaptive Augmented Kalman Modeling for Embedded Autonomous Robot Systems under Wireless Sensor Network

  • Cho, Hyun-Cheol;Kim, Kwan-Hyung;Yeo, Dae-Yeon;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.975-978
    • /
    • 2010
  • This paper presents a Kalman filter based modeling algorithm for autonomous robots. State of the robot systems is measured by using embedded sensors and then carried to a host computer via ubiquitous sensor network (USN). We settle a linear state space motion equation for unknown system dynamics and modify a popular Kalman filter algorithm in deriving suitable parameter estimation mechanism. We conduct real-time experiment to test our proposed modeling algorithm where velocity state of the constructed robot is used as system observation.

  • PDF

Leakage detection of pipeline system based on modeling and identification (모델링과 검증에 의한 파이프 라인 시스템의 유출 탐지)

  • ;;;Lee, K. S.;Song, H. K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.905-910
    • /
    • 1991
  • This paper presets a leakage detection method based on modeling the leakage in pipeline systems. For gas pipeline systems, a method based on the state space model is suggested. For liquid pipeline systems, an experiment based on the static model equation was performed. In the experiment, it was possible to detect the leak and to diagnosis the leak situation within the error of .+-.3%.

  • PDF

$H_{\infty}$ Control of Magnetic Bearing-Rotor System : LMI- based approaches (자기베어링-로터시스템의 LMI 접근법에 의한 $H_{\infty}$ 제어기 설계)

  • 박충남;송오섭;강호식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.948-953
    • /
    • 2001
  • Nonlinear dynamic equation of a 4-axis rigid rotor supported by two an-isotropic magnetic bearings is derived via Hamilton's principle. It is transformed to a state-space form for the standard Η$_{\infty}$ control problem. we present a robust Η$_{\infty}$ control design methods of continuous and discrete LMI-based approaches and improve performance using loopshaping.

  • PDF