• 제목/요약/키워드: State of Mixing

검색결과 501건 처리시간 0.026초

Fabrication of Layered Cu-Fe-Cu Structure by Cold Consolidation of Powders using High-pressure Torsion

  • Asghari-Rad, Peyman;Choi, Yeon Taek;Nguyen, Nhung Thi-Cam;Sathiyamoorthi, Praveen;Kim, Hyoung Seop
    • 한국분말재료학회지
    • /
    • 제28권4호
    • /
    • pp.287-292
    • /
    • 2021
  • In this study, the layered structures of immiscible Fe and Cu metals were employed to investigate the interface evolution through solid-state mixing. The pure Fe and Cu powders were cold-consolidated by high-pressure torsion (HPT) to fabricate a layered Cu-Fe-Cu structure. The microstructural evolutions and flow of immiscible Fe and Cu metals were investigated following different iterations of HPT processing. The results indicate that the HPT-processed sample following four iterations showed a sharp chemical boundary between the Fe and Cu layers. In addition, the Cu powders exhibited perfect consolidation through HPT processing. However, the Fe layer contained many microcracks. After 20 iterations of HPT, the shear strain generated by HPT produced interface instability, which caused the initial layered structure to disappear.

분자의 논랜덤 분포가 기체의 상태방정식에 미치는 영향 (The Effect of Nonrandom Distribution of Molecules on the Equation of State for Gases)

  • 정해영
    • 대한화학회지
    • /
    • 제57권5호
    • /
    • pp.540-546
    • /
    • 2013
  • van der Waals식의 자유부피항, 강체구형입자에 대한 Carnahan-Starling식, 용액의 논랜덤 혼합을 고려한 Wilson식, NRTL식과 본 연구자의 식등을 사용하여 기체에 대한 여러 개의 새로운 상태방정식을 만들었다. 이 식들을 이용하여 순수 기체에 대한 압축인자를 계산하였고 이를 실험적인 Nelson-Obert 압축인자도표와 비교하였다. 분자의 논랜덤 분포를 고려하여 유도된 상태방정식들이 랜덤분포를 가정한 상태방정식보다 더 좋은 결과가 나왔다. 이를 통하여 분자의 논랜덤 분포가 상태방정식에 상당한 영향을 미친다는 것을 알 수 있다.

입자 크기의 함수로 나타낸 대기 중 블랙카본의 변성시간척도 (Particle-size-dependent aging time scale of atmospheric black carbon)

  • 박성훈
    • 한국입자에어로졸학회지
    • /
    • 제5권2호
    • /
    • pp.45-52
    • /
    • 2009
  • Black carbon, which is a by-product of combustion of fossil fuel and biomass burning, is the component that imposes the largest uncertainty on quantifying aerosol climate effect. The direct, indirect and semi-direct climate effects of black carbon depend on its state of the mixing with other water-soluble aerosol components. The process that transforms hydrophobic externally mixed black carbon particles into hygroscopic internally mixed ones is called "aging". In most climate models, simple parameterizations for the aging time scale are used instead of solving detailed dynamics equations on the aging process due to the computation cost. In this study, a new parameterization for the black carbon aging time scale due to condensation and coagulation is presented as a function of the concentration of hygroscopic atmospheric components and the black carbon particle size. It is shown that the black carbon aging time scale due to condensation of sulfuric acid vapors varies to a large extent depending on the sulfuric acid concentration and the black carbon particle size. This result indicates that the constant aging time scale values suggested in the literature cannot be directly applied to a global scale modeling. The aging time scale due to coagulation with internally mixed aerosol particles shows an even stronger dependency on particle size, which implies that the use of a particle-size-independent aging time scale may lead to a large error when the aging is dominated by coagulation.

  • PDF

McG(맥) 주입공법에 의한 지반보강 및 차수효과에 관한 연구 (A Study on the Ground Reinforcement and Impermeable Effect by McG)

  • 정종주;도경량;신태욱;박원춘
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.581-590
    • /
    • 2005
  • The grouting method is widely used as the impermeable effect and ground reinforcement in construction. But, it has a problem that cement and grout material are not mixed well in the injection tip equipment and an opposite flow and interception state of the chemical grouting is happened. so, continuous work is difficult. McG method installed a special grouting and device, made possible go well mixing of grouting material and prevent flowing backward and block of nozzle also diversify powder rate of cement that is grouting material to select sutible material in layer conditions. YSS that lowered $Na_2O$ influencing durability and circumstance is developed by gel-forming reaction material. so eco-circumstance and durability is increased by minimizing dissolution of underground water. In this study, it is assumed that seepage state of the injection material using a special injection tip equipment and a unconfined compressive strenth by mixing a various injection material of various. And it is confirmed that strenth increase effect and permeable decrease of the improved body through the test execution and field execution.

  • PDF

$Fe_2O_3$ 응집상태와 Ba-Ferrite의 소결성 ($Fe_2O_3$ Aggregation and Sintering of Ba-Ferrite)

  • 남효덕;조상희
    • 대한화학회지
    • /
    • 제25권5호
    • /
    • pp.318-324
    • /
    • 1981
  • 일차입자의 크기와 응집상태가 다른 두 종류의 $Fe_2O_3$를 부분침전법과 ball-mill 혼합법으로 BaCO$_3$와 혼합한 $BaCO_3-Fe_2O_3$계의 고체반응에 있어 $Fe_2O_3$분체의 영향을 조사하였다. TG, XRD, SEM 등을 측정에 사용하였으며, X-선 회절분석결과 Ba-ferrite의 생성과정은 다음과 같은 연속적인 2단계로 이루어진다는 것을 알았다. $BaCO_3 + 6Fe_2O_3\;{\longrightarrow}\;BaFe_2O_3 + 5Fe_2O_3 + CO_2{\uparrow}\;BaFe_2O_4 + 5Fe_2O_3 \;{\longrightarrow}\;BaFe_{12}O_{19}$$Fe_2O_3$원료분체의 응집상태와 혼합방법은 고체반응에 현저한 영향을 미친다는 것을 확인했다.

  • PDF

Influence of "Historical Effects" on the Rheological Properties of a Polyacrylonitrile Copolymer Solution

  • Cheng, Yumin;Zhang, Huibo;Zhang, Shuangkun;Liu, Weiwei;Wang, Jing;Cheng, Run;Ryu, SeungKon;Jin, Riguang
    • Carbon letters
    • /
    • 제14권1호
    • /
    • pp.45-50
    • /
    • 2013
  • Polyacrylonitrile (PAN) copolymers of different molecular weights were synthesized by a suspension polymerization and precipitation polymerization method. The rheology behaviors of the synthesized PAN copolymers were investigated in relation to their molecular weight, solid content and melting temperature. The influence of "historical effects" on the spinning solution of PAN was studied by analyzing the laws of viscosity considering the diversification time and temperature. The viscosity disciplines of each spinning solution conformed well to the rheological universal laws in a comparison of the suspension polymerization product with that of precipitation polymerization. Viscosity changes in the swelling process of dissolution were gentler in the suspension polymerization product; a small amount of water will quickly debase the solution viscosity, and high-speed mixing can greatly shorten the time required by the spinning solution to reach the final viscosity.

Validation of Computational Fluid Dynamics Calculation Using Rossendorf Coolant Mixing Model Flow Measurements in Primary Loop of Coolant in a Pressurized Water Reactor Model

  • Farkas, Istvan;Hutli, Ezddin;Farkas, Tatiana;Takacs, Antal;Guba, Attila;Toth, Ivan
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.941-951
    • /
    • 2016
  • The aim of this work is to simulate the thermohydraulic consequences of a main steam line break and to compare the obtained results with Rossendorf Coolant Mixing Model (ROCOM) 1.1 experimental results. The objective is to utilize data from steady-state mixing experiments and computational fluid dynamics (CFD) calculations to determine the flow distribution and the effect of thermal mixing phenomena in the primary loops for the improvement of normal operation conditions and structural integrity assessment of pressurized water reactors. The numerical model of ROCOM was developed using the FLUENT code. The positions of the inlet and outlet boundary conditions and the distribution of detailed velocity/turbulence parameters were determined by preliminary calculations. The temperature fields of transient calculation were averaged in time and compared with time-averaged experimental data. The perforated barrel under the core inlet homogenizes the flow, and therefore, a uniform temperature distribution is formed in the pressure vessel bottom. The calculated and measured values of lowest temperature were equal. The inlet temperature is an essential parameter for safety assessment. The calculation predicts precisely the experimental results at the core inlet central region. CFD results showed a good agreement (both qualitatively and quantitatively) with experimental results.

The interaction between helium flow within supersonic boundary layer and oblique shock waves

  • Kwak, Sang-Hyun;Iwahori, Yoshiki;Igarashi, Sakie;Obata, Sigeo
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.75-78
    • /
    • 2004
  • Various jet engines (Turbine engine family and RAM Jet engine) have been developed for high speed aircrafts. but their application to hypersonic flight is restricted by principle problems such as increase of total pressure loss and thermal stress. Therefore, the development of next generation propulsion system for hypersonic aircraft is a very important subject in the aerospace engineering field, SCRAM Jet engine based on a key technology, Supersonic Combustion. is supposed as the best choice for the hypersonic flight. Since Supersonic Combustion requires both rapid ignition and stable flame holding within supersonic air stream, much attention have to be given on the mixing state between air stream and fuel flow. However. the wider diffusion of fuel is expected with less total pressure loss in the supersonic air stream. So. in this study the direction of fuel injection is inclined 30 degree to downstream and the total pressure of jet is controlled for lower penetration height than thickness of boundary layer. Under these flow configuration both streams, fuel and supersonic air stream, would not mix enough. To spread fuel wider into supersonic air an aerodynamic force, baroclinic torque, is adopted. Baroclinic torque is generated by a spatial misalignment between pressure gradient (shock wave plane) and density gradient (mixing layer). A wedge is installed in downstream of injector orifice to induce an oblique shock. The schlieren optical visualization from side transparent wall and the total pressure measurement at exit cross section of combustor estimate how mixing is enhanced by the incidence of shock wave into supersonic boundary layer composed by fuel and air. In this study non-combustionable helium gas is injected with total pressure 0.66㎫ instead of flammable fuel to clarify mixing process. Mach number 1.8. total pressure O.5㎫, total temperature 288K are set up for supersonic air stream.

  • PDF

LiCo$O_2$$LiCo_{1-x}$$Ni_x$$O_2$고용체의 제조 및 양이온 혼합 현상 (Preparation and cation mixing phenomena of LiCo$O_2$and $LiCo_{1-x}$$Ni_x$$O_2$ solid solutions)

  • 임창성;안홍주;강승민;하정수;고영신
    • 한국결정성장학회지
    • /
    • 제9권6호
    • /
    • pp.601-605
    • /
    • 1999
  • $LiCoO_2$와 고용체 화합물인 $LiCo_{1-x}Ni_XO_2$을 고상반응법을 이용하여 제조하여 XRD, SEM, 입도분석, $^7$Li NMR을 통하여 그 구조적 cation mixing 현상을 조사하였다. 고상반응법으로 합성한 $LiCoO_2$$LiCo_{1-x}$$Ni_x$$O_2$의 미세결정상은 hexagonal layered structure를 보여주었고 전반적인 입도는 니켈의 함량에 따라 증가되었다. 고용체에 있어서 Ni의 함량 분율(x)이 x=0.3, 0.5, 0.7로 Ni의 양이 증가함에 따라 cation mixing 효과가 증가되었다. $^7$Li NMR의 peak frequency는 Ni의 함량이 증가함에 따라 high frequency로 shift되었고 line width는 Ni의 함량에 따라 넓어지는 양상을 보여주었다.

  • PDF

초임계 유체법에 의한 SrTiO3: Pr3+ 형광체 분말 제조 및 발광특성 (Preparation of SrTiO3: Pr3+ Phosphors Using Supercritical Fluid Method and its Luminescence Properties)

  • 최근묵;홍석형;임대영;노준석;조승범
    • 한국세라믹학회지
    • /
    • 제39권11호
    • /
    • pp.1023-1027
    • /
    • 2002
  • 본 연구에서는 초임계 mixing을 이용하여 $SrTiO_3:\;Pr^{3+}$ 형광체 분말을 제조하였으며, 일반적 제조 방법인 고상법으로 제조된 분말과 발광특성을 비교하였다. 초임계 mixing에 의해 제조된 $SrTiO_3:\;Pr^{3+}$ 형광체 분말은 단상의 perovskite 구조를 갖으며, 형상은 구형인 좁은 입도분포를 보인다. 발광특성의 증대를 sensitizer인 $Al^{3+}$$Ga^{3+}$을 첨가하여 형광체의 발광특성을 관찰하였다.