• Title/Summary/Keyword: State Time-Delay

Search Result 591, Processing Time 0.034 seconds

Sliding Mode Control for Time-delay System using Virtual State (가상 상태를 이용한 시간 지연 시스템의 슬라이딩 모드 제어)

  • 송영삼;권성하;박승규;오도창;정은태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.341-341
    • /
    • 2000
  • This paper presents a sliding mode control(SMC) design method for single input linear systems with uncertainties and time delay in the state. We define a sliding surface for the augmented system with a virtual state which is defined from the nominal system. We make a virtual state from optimal control input using LOR(Linear Quadratic Regulator) and the states of the nominal system. We construct a controller that combines SMC with optimal controller. The proposed sliding mode controller stabilizes on the overall closed-loop system.

  • PDF

Time delay control with state feedback for azimuth motion of the frictionless positioning device

  • Jeong, Ho-Seop;Lee, Chong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.385-388
    • /
    • 1996
  • A time delay controller with state feedback is proposed for azimuth motion control of the frictionless positioning device which is subject to the variations of inertia in the presence of measurement noise. The time delay controller, which is combined with a low-pass filter to attenuate the effect of measurement noise, ensures the asymptotic stability of the closed loop system. It is found that the low-pass filter tends to increase the robustness in the design of time delay controller as well as the gain and phase margins of the closed loop system. Numerical and experimental results support that the proposed controller guarantees a good tracking performance irrespective of the variation of inertia and the presence of measurement noise.

  • PDF

Design of Robust Control for State-Delay Systems

  • Joon, Kwon-Taek;Chul, Ha-In;Chul, Han-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.129.6-129
    • /
    • 2001
  • In this paper, we consider a class of time-varying systems with time-varying state delay. Generally, this system is affected by many uncertainties and we assume that the information of the upper bound(time-delay, uncertainty) is known. In this work, we propose a robust control for system with state delay. The stability based on Lyapunov function is presented. Finally, a numberical example is given to demonstrate the validity of the result.

  • PDF

A Transfer Alignment Considering Measurement Time-Delay and Ship Body Flexure (측정치 시간지연과 선체의 유연성을 고려한 전달정렬 기법)

  • Lim, You-Chol;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.225-233
    • /
    • 2001
  • This paper deals with the transfer alignment problem of SDINS(StrapDown Inertial Navigation System) subjected to roll and pitch motions of the ship. Specifically, to reduce alignment errors induced by measurement time-delay and ship body flexure, an error compensation method is suggested based on delay state augmentation and DCM(Direction Cosine Matrix) partial matching. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonlinear measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then DCM partial matching is properly combined to reduce effects of a ship's Y axis flexure. The simulation results show that the suggested method is effective enough resulting in considerably less azimuth alignment errors.

  • PDF

Delay-dependent Robust $H_{\infty}$ Control for Uncertain Discrete-time Descriptor Systems with Interval Time-varying Delays in State and Control Input (상태와 입력에 구간 시변 시간지연을 가지는 불확실 이산시간 특이시스템의 지연 종속 강인 $H_{\infty}$ 제어)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.193-198
    • /
    • 2009
  • In this paper, we consider the design problem of delay-dependent robust $H{\infty}$ controller of discrete-time descriptor systems with parameter uncertainties and interval time-varying delays in state and control input by delay-dependent LMI (linear matrix inequality) technique. A new delay-dependent bounded real lemma for discrete-time descriptor systems with time-varying delays is derived. The condition for the existence of robust $H{\infty}$ controller and the robust $H{\infty}$ state feedback control law are proposed by LMI approach. A numerical example is demonstrated to show the validity of the design method.

Duty Ratio Predictive Control Scheme for Digital Control of DC-DC Switching Converters

  • Sun, Pengju;Zhou, Luowei
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.156-162
    • /
    • 2011
  • The control loop time delay caused by sampling, the zero-order-holder effect and calculations is inevitable in the digital control of dc-dc switching converters. The time delay will limit the bandwidth of the control loop and therefore degrade the transient performance of digital systems. In this paper, the quantization time delay effects with different time delay values based on a generic second-order system are analyzed. The conclusion that the bandwidth of digital control is reduced by about 20% with a one cycle delay and by 50% with two cycles of delay in comparison with no time delay is obtained. To compensate the time delay and to increase the control loop bandwidth, a duty ratio predictive control scheme based on linear extrapolation is proposed. The compensation effect and a comparison of the load variation transient response characteristics with analogy control, conventional digital control and duty ratio predictive control with different time delay values are performed on a point-of-load Buck converter by simulations and experiments. It is shown that, using the proposed technique, the control loop bandwidth can be increased by 50% for a one cycle delay and 48.2% for two cycles of delay when compared to conventional digital control. Simulations and experimental results prove the validity of the conclusion of the quantization effects of the time delay and the proposed control scheme.

Robust and Non-fragile $H^{i~}$ State Feedback Controller Design for Time Delay Systems

  • Cho, Sang-Hyun;Kim, Ki-Tae;Park, Hong-Bae
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.503-510
    • /
    • 2003
  • This paper describes the synthesis of robust and non-fragile $H^{i~}$state feedback controllers for linear varying systems with time delay and affine parameter uncertainties, as well as static state feedback controller with structural uncertainty. The sufficient condition of controller existence, the design method of robust and non-fragile $H^{i~}$static state feedback controller, and the region of controllers satisfying non-fragility are presented. Also, using some change of variables and Schur complements, the obtained conditions can be rewritten as parameterized Linear Matrix Inequalities (PLMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of time delay and controller gain variations within a resulted polytopic region.

State Feedback Stabilization of Network Based Control Systems with Time-varying Delay (시변시간지연을 가지는 네트워크 기반 시스템의 상태궤환 안정화)

  • Jung Eui-Heon;Shu Young-Su;Lee Hong-Hee
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.741-746
    • /
    • 2004
  • When investigating a control problem for network based control systems, the main issue is network-induced delay. This delay can degrade the performance of control systems designed without considering the delay and even destabilize the system. In this paper, we consider the stabilization of network based control systems, where there is bounded time-varying delay. This delay is treated like parameter variation of a discrete time system. The state feedback controller design is formulated as linear matrix inequality. Finally, we show that the stability of control systems designed with considering the delay is superior to that is not so.

Delay-Dependent Robust Stabilization and Non-Fragile Control of Uncertain Discrete-Time Singular Systems with State and Input Time-Varying Delays (상태와 입력에 시변 시간지연을 가지는 불확실 이산시간 특이시스템의 지연종속 강인 안정화 및 비약성 제어)

  • Kim, Jong-Hae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • This paper deals with the design problem of robust stabilization and non-fragile controller for discrete-time singular systems with parameter uncertainties and time-varying delays in state and input by delay-dependent Linear Matrix Inequality (LMI) approach. A new delay-dependent bounded real lemma for singular systems with time-varying delays is derived. Robust stabilization and robust non-fragile state feedback control laws are proposed, which guarantees that the resultant closed-loop system is regular, causal and stable in spite of time-varying delays, parameter uncertainties, and controller gain variations. A numerical example is given to show the validity of the design method.

Delay-dependent Guaranteed Cost Control for Uncertain State-delayed Systems

  • Lee Young Sam;Kwon Oh-Kyu;Kwon Wook Hyun
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.524-532
    • /
    • 2005
  • This paper concerns delay-dependent guaranteed cost control (GCC) problem for a class of linear state-delayed systems with norm-bounded time-varying parametric uncertainties. By incorporating the free weighing matrix approach developed recently, new delay-dependent conditions for the existence of the guaranteed cost controller are presented in terms of matrix inequalities for both nominal state-delayed systems and uncertain state-delayed systems. An algorithm involving convex optimization is proposed to design a controller achieving a suboptimal guaranteed cost such that the system can be stabilized for all admissible uncertainties. Through numerical examples, it is shown that the proposed method can yield less guaranteed cost than the existing delay-dependent methods.