• Title/Summary/Keyword: State Monitoring

Search Result 1,591, Processing Time 0.027 seconds

A Study on Non-Contact Vocal Instruction (비대면 가창 수업 방법 고찰)

  • Lim, Ji-Hyun;Min, Kyung-Won
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.1
    • /
    • pp.27-38
    • /
    • 2021
  • Non-Contact society has arrived due to social distinctions by COVID 19 pandemic. The arrival of the era of non-contact is having a profound impact on educational activities as well as on our social and economic lives. In response to the pandemic situation universities and all other educational institutions have implemented non-contact online classes. In particular arts physical educations and other practical classes are experiencing many difficulties due to the limited environment caused by social distancing from COVID 19 pandemic. Vocal classes are undergoing a transition mainly from 1:1 individual face-to-face lessons or group teaching methods to the non-contact era of online teaching or lesson methods. It is necessary to look at the direction of non-face-to-face practical classes in preparation for accelerated educational innovation. Edu-tech, which innovates technology in the wake of the age of non-contact after COVID 19 pandemic is expected to begin in earnest at school sites in Korea which have remained in the traditional way of education. The purpose of this study is to effectively non-contact vocal instructional methods by cogitating the current state of higher practical education and vocal classes in Korea. In addition, This study conducted two components of satisfied instructions such as 'Priorlearning of monitoring of recorded singing', and 'Immediate analyzing of various vocal contents and supplementary lessons of music theory' with a research on the peos and cons of non-face-to-face vocal class. Over a period of time, The effective non-contact of vocal instructional methods is in need to supplement non-face-to-face vocal class problems and further research and system construction with non-face-to-face vocal class's pros and cons to construct high-quality lecture contents is warranted.

Prediction and Analysis of PM2.5 Concentration in Seoul Using Ensemble-based Model (앙상블 기반 모델을 이용한 서울시 PM2.5 농도 예측 및 분석)

  • Ryu, Minji;Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1191-1205
    • /
    • 2022
  • Particulate matter(PM) among air pollutants with complex and widespread causes is classified according to particle size. Among them, PM2.5 is very small in size and can cause diseases in the human respiratory tract or cardiovascular system if inhaled by humans. In order to prepare for these risks, state-centered management and preventable monitoring and forecasting are important. This study tried to predict PM2.5 in Seoul, where high concentrations of fine dust occur frequently, using two ensemble models, random forest (RF) and extreme gradient boosting (XGB) using 15 local data assimilation and prediction system (LDAPS) weather-related factors, aerosol optical depth (AOD) and 4 chemical factors as independent variables. Performance evaluation and factor importance evaluation of the two models used for prediction were performed, and seasonal model analysis was also performed. As a result of prediction accuracy, RF showed high prediction accuracy of R2 = 0.85 and XGB R2 = 0.91, and it was confirmed that XGB was a more suitable model for PM2.5 prediction than RF. As a result of the seasonal model analysis, it can be said that the prediction performance was good compared to the observed values with high concentrations in spring. In this study, PM2.5 of Seoul was predicted using various factors, and an ensemble-based PM2.5 prediction model showing good performance was constructed.

Toxicological Assessment to Environmental Stressors Using Exoskeleton Surface Roughness in Macrophthalmus japonicus: New Approach for an Integrated End-point Development (칠게 외골격 표면 거칠기를 이용한 노출 독성 평가: 새로운 융합적 연구)

  • Park, Kiyun;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.265-271
    • /
    • 2021
  • Intertidal mud crab (Macrophthalmus japonicus) is an organism with a hard chitinous exoskeleton and has function for an osmotic control in response to the salinity gradient of seawater. Crustacean exoskeletons change in their natural state in response to environmental factors, such as changes in the pH and water temperature, and the presence of pollutant substances and pathogen infection. In this study, the ecotoxicological effects of irgarol exposure and heavy metal distribution were presented by analyzing the surface roughness of the crab exoskeleton. The exoskeleton surface roughness and variation reduced in M. japonicus exposed to irgarol. In addition, it was confirmed that the surface roughness and variation were changed in the field M. japonicus crab according to the distribution of toxic heavy metals(Cd, Pb, Hg) in marine sediments. This change in the surface roughness of the exoskeleton represents a new end-point of the biological response of the crab according to external environmental stressors. This suggests that it may affect the functional aspects of exoskeleton protection, support, and transport. This approach can be utilized as a useful method for monitoring the aquatic environment as an integrated technology of mechanical engineering and biology.

Sequential Use of COMSOL Multiphysics® and PyLith for Poroelastic Modeling of Fluid Injection and Induced Earthquakes (COMSOL Multiphysics®와 PyLith의 순차 적용을 통한 지중 유체 주입과 유발지진 공탄성 수치 모사 기법 연구)

  • Jang, Chan-Hee;Kim, Hyun Na;So, Byung-Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.643-659
    • /
    • 2022
  • Geologic sequestration technologies such as CCS (carbon capture and storage), EGS (enhanced geothermal systems), and EOR (enhanced oil recovery) have been widely implemented in recent years, prompting evaluation of the mechanical stability of storage sites. As fluid injection can stimulate mechanical instability in storage layers by perturbing the stress state and pore pressure, poroelastic models considering various injection scenarios are required. In this study, we calculate the pore pressure, stress distribution, and vertical displacement along a surface using commercial finite element software (COMSOL); fault slips are subsequently simulated using PyLith, an open-source finite element software. The displacement fields, are obtained from PyLith is transferred back to COMSOL to determine changes in coseismic stresses and surface displacements. Our sequential use of COMSOL-PyLith-COMSOL for poroelastic modeling of fluid-injection and induced-earthquakes reveals large variations of pore pressure, vertical displacement, and Coulomb failure stress change during injection periods. On the other hand, the residual stress diffuses into the remote field after injection stops. This flow pattern suggests the necessity of numerical modeling and long-term monitoring, even after injection has stopped. We found that the time at which the Coulomb failure stress reaches the critical point greatly varies with the hydraulic and poroelastic properties (e.g., permeability and Biot-Willis coefficient) of the fault and injection layer. We suggest that an understanding of the detailed physical properties of the surrounding layer is important in selecting the injection site. Our numerical results showing the surface displacement and deviatoric stress distribution with different amounts of fault slip highlight the need to test more variable fault slip scenarios.

The Effects of Group Coaching Program on Improving Metacognition Learning Ability for Adult Learners (성인학습자 대상 메타인지 학습능력 증진 그룹코칭 프로그램의 효과성 검증)

  • Hyunjin Kim;Taehee Kim
    • The Korean Journal of Coaching Psychology
    • /
    • v.7 no.2
    • /
    • pp.47-74
    • /
    • 2023
  • The purpose of this study was to test the effectiveness of a group coaching program to promote metacognitive learning ability in an academic context for adult learners enrolled at a distance university. The topics and objectives of the group coaching program focused on understanding and applying the elements of 'metacognitive knowledge', and each session was conducted online by integrating 'planing-monitoring-regulating', an element of 'metacognitive regulation', into the REGROW model of coaching. To verify the effectiveness of the program, research participants were recruited from adult university students enrolled in A Cyber University and assigned to the experimental and control groups. The experimental group was given the program, while the control group was given the program after the completion of the study. Metacognitive learning ability level and academic self-efficacy were tested before and after the program for both groups, and a satisfaction survey was conducted for the experimental group. Analyses of the data revealed that the experimental group showed higher scores on both the overall and sub-scales of perceived metacognitive learning ability and academic self-efficacy compared to the control group. Participants in the experimental group also reported high satisfaction with the program, increased knowledge of metacognition, awareness and application of metacognitive strategies, and found the group coaching approach beneficial. Based on these findings, implications, and suggestions for future research are presented.

Effects of Occupational Trauma Exposure on Brain Functional Connectivity in Firefighters With Subclinical Post-Traumatic Stress Symptoms: A Resting-State Functional Magnetic Resonance Imaging Study (직업적 외상 노출이 역치 하 외상 후 스트레스 증상을 보이는 소방공무원의 뇌 기능적 연결성에 미치는 영향: 휴지기 기능적 자기공명영상 연구)

  • Heo, Yul;Bang, Minji;Lee, Sang-Hyuk;Lee, Kang Soo
    • Anxiety and mood
    • /
    • v.18 no.2
    • /
    • pp.39-47
    • /
    • 2022
  • Objective : This study investigated brain functional connectivity in male firefighters who showed subclinical post-traumatic stress disorder (PTSD) symptoms. Methods : We compared the data of 17 firefighters who were not diagnosed with PTSD and 18 healthy controls who had no trauma exposure. The following instruments were applied to assess psychiatric symptoms: Korean version of the Post-traumatic stress disorder Checklist for DSM-5 (PCL-5-K), Beck Depression Inventory-II (BDI-II), Beck Anxiety Inventory (BAI). For all subjects, functional magnetic resonance imaging was performed, and functional connectivity was compared between the two groups (family-wise error-corrected p<0.05). Additionally, correlations between psychiatric symptoms and functional connectivity were explored. Results : The following connectivity was higher than that of healthy controls: 1) the central opercular cortex-superior temporal gyrus, 2) planum polare-parahippocampal gyrus, 3) angular gyrus-amygdala, and 4) temporal fusiform cortex-parahippocampal gyrus. The functional connectivity of 1) the lateral occipital cortex-inferior temporal gyrus, 2) superior parietal lobule-caudate, and 3) middle temporal gyrus-thalamus were lower in firefighters. In firefighters, the connectivity of the planum polare-parahippocampal gyrus showed a negative correlation with the severity of arousal symptoms (rho=-0.586, p=0.013). The connectivity of the middle temporal gyrus-thalamus showed a positive correlation with the severity of intrusion (rho=0.552, p=0.022) and arousal symptoms (rho=0.619, p=0.008). The connectivity of the temporal fusiform cortex-parahippocampal gyrus was negatively correlated with intrusion (rho=-0.491, p=0.045) and arousal (rho=-0.579, p=0.015). Conclusion : Our results indicate that the brain functional connectivity is associated with occupational trauma exposure in firefighters without PTSD. Therefore, this study provides evidence that close monitoring and early intervention are important for firefighters with traumatic experience even at a subthreshold level.

A Study on Intelligent Self-Recovery Technologies for Cyber Assets to Actively Respond to Cyberattacks (사이버 공격에 능동대응하기 위한 사이버 자산의 지능형 자가복구기술 연구)

  • Se-ho Choi;Hang-sup Lim;Jung-young Choi;Oh-jin Kwon;Dong-kyoo Shin
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.137-144
    • /
    • 2023
  • Cyberattack technology is evolving to an unpredictable degree, and it is a situation that can happen 'at any time' rather than 'someday'. Infrastructure that is becoming hyper-connected and global due to cloud computing and the Internet of Things is an environment where cyberattacks can be more damaging than ever, and cyberattacks are still ongoing. Even if damage occurs due to external influences such as cyberattacks or natural disasters, intelligent self-recovery must evolve from a cyber resilience perspective to minimize downtime of cyber assets (OS, WEB, WAS, DB). In this paper, we propose an intelligent self-recovery technology to ensure sustainable cyber resilience when cyber assets fail to function properly due to a cyberattack. The original and updated history of cyber assets is managed in real-time using timeslot design and snapshot backup technology. It is necessary to secure technology that can automatically detect damage situations in conjunction with a commercialized file integrity monitoring program and minimize downtime of cyber assets by analyzing the correlation of backup data to damaged files on an intelligent basis to self-recover to an optimal state. In the future, we plan to research a pilot system that applies the unique functions of self-recovery technology and an operating model that can learn and analyze self-recovery strategies appropriate for cyber assets in damaged states.

Monitoring of Crop Water Stress with Temperature Conditions Using MTCI and CCI (가뭄과 폭염 조건에서 MTCI와 CCI를 이용한 수분 스트레스 평가)

  • Kyeong-Min Kim;Hyun-Dong Moon;Euni Jo;Bo-Kyeong Kim;Subin Choi;Yuhyeon Lee;Yuna Lee;Hoejeong Jeong;Jae-Hyun Ryu;Hoyong Ahn;Seongtae Lee;Jaeil Cho
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1225-1234
    • /
    • 2023
  • The intensity of crop water stress caused by moisture deficit is affected by growth and heat conditions. For more accurate detection of crop water stress state using remote sensing techniques, it is necessary to select vegetation indices sensitive to crop response and to understand their changes considering not only soil moisture deficit but also heat conditions. In this study, we measured the MERIS terrestrial chlorophyll index (MTCI) and chlorophyll/carotenoid index (CCI) under drought and heat wave conditions. The MTCI, sensitive to chlorophyll concentration, sensitively decreased on non-irrigation conditions and the degree was larger with heat waves. On the other hand, the CCI, correlated with photosynthesis efficiency, showed less sensitivity to water deficit but had decreased significantly with heat waves. After re-irrigation, the MTCI was increased than before damage and CCI became more sensitive to heat stress. These results are expected to contribute to evaluating the intensity of crop water stress through remote sensing techniques.

Experimental study on the vertical bearing behavior of nodular diaphragm wall in sandy soil based on PIV technique

  • Jiujiang Wu;Longjun Pu;Hui Shang;Yi Zhang;Lijuan Wang;Haodong Hu
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.195-208
    • /
    • 2023
  • The nodular diaphragm wall (NDW) is a novel type of foundation with favorable engineering characteristics, which has already been utilized in high-rise buildings and high-speed railways. Compared to traditional diaphragm walls, the NDW offers significantly improved vertical bearing capacity due to the presence of nodular parts while reducing construction time and excavation work. Despite its potential, research on the vertical bearing characteristics of NDW requires further study, and the investigation and visualization of its displacement pattern and failure mode are scant. Meanwhile, the measurement of the force component acting on the nodular parts remains challenging. In this paper, the vertical bearing characteristics of NDW are studied in detail through the indoor model test, and the displacement and failure mode of the foundation is analyzed using particle image velocimetry (PIV) technology. The principles and methods for monitoring the force acting on the nodular parts are described in detail. The research results show that the nodular part plays an essential role in the bearing capacity of the NDW, and its maximum load-bearing ratio can reach 30.92%. The existence of the bottom nodular part contributes more to the bearing capacity of the foundation compared to the middle nodular part, and the use of both middle and bottom nodular parts increases the bearing capacity of the foundation by about 9~12% compared to a single nodular part of the NDW. The increase in the number of nodular parts cannot produce a simple superposition effect on the resistance born by the nodular parts since the nodular parts have an insignificant influence on the exertion and distribution of the skin friction of NDW. The existence of the nodular part changes the displacement field of the soil around NDW and increases the displacement influence range of the foundation to a certain extent. For NDWs with three different nodal arrangements, the failure modes of the foundations appear to be local shear failures. Overall, this study provides valuable insights into the performance and behavior of NDWs, which will aid in their effective utilization and further research in the field.

Added Value of Chemical Exchange-Dependent Saturation Transfer MRI for the Diagnosis of Dementia

  • Jang-Hoon Oh;Bo Guem Choi;Hak Young Rhee;Jin San Lee;Kyung Mi Lee;Soonchan Park;Ah Rang Cho;Chang-Woo Ryu;Key Chung Park;Eui Jong Kim;Geon-Ho Jahng
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.770-781
    • /
    • 2021
  • Objective: Chemical exchange-dependent saturation transfer (CEST) MRI is sensitive for detecting solid-like proteins and may detect changes in the levels of mobile proteins and peptides in tissues. The objective of this study was to evaluate the characteristics of chemical exchange proton pools using the CEST MRI technique in patients with dementia. Materials and Methods: Our institutional review board approved this cross-sectional prospective study and informed consent was obtained from all participants. This study included 41 subjects (19 with dementia and 22 without dementia). Complete CEST data of the brain were obtained using a three-dimensional gradient and spin-echo sequence to map CEST indices, such as amide, amine, hydroxyl, and magnetization transfer ratio asymmetry (MTRasym) values, using six-pool Lorentzian fitting. Statistical analyses of CEST indices were performed to evaluate group comparisons, their correlations with gray matter volume (GMV) and Mini-Mental State Examination (MMSE) scores, and receiver operating characteristic (ROC) curves. Results: Amine signals (0.029 for non-dementia, 0.046 for dementia, p = 0.011 at hippocampus) and MTRasym values at 3 ppm (0.748 for non-dementia, 1.138 for dementia, p = 0.022 at hippocampus), and 3.5 ppm (0.463 for non-dementia, 0.875 for dementia, p = 0.029 at hippocampus) were significantly higher in the dementia group than in the non-dementia group. Most CEST indices were not significantly correlated with GMV; however, except amide, most indices were significantly correlated with the MMSE scores. The classification power of most CEST indices was lower than that of GMV but adding one of the CEST indices in GMV improved the classification between the subject groups. The largest improvement was seen in the MTRasym values at 2 ppm in the anterior cingulate (area under the ROC curve = 0.981), with a sensitivity of 100 and a specificity of 90.91. Conclusion: CEST MRI potentially allows noninvasive image alterations in the Alzheimer's disease brain without injecting isotopes for monitoring different disease states and may provide a new imaging biomarker in the future.