• Title/Summary/Keyword: State Delay

Search Result 949, Processing Time 0.028 seconds

Periodic Properties of a Lyapunov Functional of State Delay Systems

  • Young Soo Suh
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.92-96
    • /
    • 2002
  • This paper is concerned with properties of a Lyapunov functional of state delay systems. It is shown that if a state delay system has a pure imaginary pole for some state delay, then no Lyapunov functional satisfying a Lyapunov condition exists periodically with respect to change of the state delay. This periodic property is unique in state delay systems and has been well known in the frequency domain stability conditions. However, in the time domain stability conditions using a Lyapunov functional, the periodic property is not known explicitly.

  • PDF

STABILITY OF POSITIVE STEADY-STATE SOLUTIONS IN A DELAYED LOTKA-VOLTERRA DIFFUSION SYSTEM

  • Yan, Xiang-Ping;Zhang, Cun-Hua
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.715-731
    • /
    • 2012
  • This paper considers the stability of positive steady-state solutions bifurcating from the trivial solution in a delayed Lotka-Volterra two-species predator-prey diffusion system with a discrete delay and subject to the homogeneous Dirichlet boundary conditions on a general bounded open spatial domain with smooth boundary. The existence, uniqueness and asymptotic expressions of small positive steady-sate solutions bifurcating from the trivial solution are given by using the implicit function theorem. By regarding the time delay as the bifurcation parameter and analyzing in detail the eigenvalue problems of system at the positive steady-state solutions, the asymptotic stability of bifurcating steady-state solutions is studied. It is demonstrated that the bifurcating steady-state solutions are asymptotically stable when the delay is less than a certain critical value and is unstable when the delay is greater than this critical value and the system under consideration can undergo a Hopf bifurcation at the bifurcating steady-state solutions when the delay crosses through a sequence of critical values.

Time-Discretization of Nonlinear control systems with State-delay via Taylor-Lie Series (Taylor-Lei Series에 의한 지연이 있는 비선형 시스템의 시간 이산화)

  • Zhang, Yuanliang;Lee, Yi-Dong;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.125-127
    • /
    • 2005
  • In this paper, we propose a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption. This scheme is applied to the sample-data representation of a nonlinear system with constant state tine-delay. The mathematical expressions of the discretization scheme are presented and the effect of the time-discretization method on key properties of nonlinear control system with state tine-delay, such as equilibrium properties and asymptotic ability, is examined. The proposed scheme provides a finite-dimensional representation for nonlinear systems with state time-delay enabling existing controller design techniques to be applied to then. The performance of the proposed discretization procedure is evaluated using a nonlinear system. For this nonlinear system, various sampling rates and time-delay values are considered.

  • PDF

Active control of a nonlinear and hysteretic building structure with time delay

  • Liu, Kun;Chen, Long-Xiang;Cai, Guo-Ping
    • Structural Engineering and Mechanics
    • /
    • v.40 no.3
    • /
    • pp.431-451
    • /
    • 2011
  • Time delay inevitably exists in active control systems, and it may cause the degradation of control efficiency or instability of the systems. So time delay needs to be compensated in control design in order to eliminate its negative effect on control efficiency. Today time delay in linear systems has been more studied and some treating methods had been worked out. However, there are few treating methods for time delay in nonlinear systems. In this paper, an active controller for a nonlinear and hysteretic building structure with time delay is studied. The nonlinear and hysteretic behavior of the system is illustrated by the Bouc-Wen model. By specific transformation and augmentation of state parameters, the motion equation of the system with explicit time delay is transformed into the standard state space representation without any explicit time delay. Then the fourth-order Runge-Kutta method and instantaneous optimal control method are applied to the controller design with time delay. Finally, numerical simulations and comparisons of an eight-story building using the proposed time-delay controller are carried out. Simulation results indicate that the control performance will deteriorate if time delay is not taken into account in the control design. The simulations also prove the proposed time delay controller in this paper can not only effectively compensate time delay to get better control effectiveness, but also work well with both small and large time delay problems.

SOLVABILITY OF IMPULSIVE NEUTRAL FUNCTIONAL INTEGRO-DIFFERENTIAL INCLUSIONS WITH STATE DEPENDENT DELAY

  • Karthikeyan, K.;Anguraj, A.
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.57-69
    • /
    • 2012
  • In this paper, we prove the existence of mild solutions for a first order impulsive neutral differential inclusion with state dependent delay. We assume that the state-dependent delay part generates an analytic resolvent operator and transforms it into an integral equation. By using a fixed point theorem for condensing multi-valued maps, a main existence theorem is established.

Measurement Time-Delay Error Compensation for Transfer Alignment (전달정렬의 측정치 시간지연 오차보상 기법)

  • Lim, You-Chol;Song, Gi-Won;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.953-957
    • /
    • 2001
  • This paper is concerned with a transfer alignment method for the SDINS under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonliner measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

Measurement Time-Delay Error Compensation For Transfer Alignment

  • Lim, You-Chol;Song, Ki-Won;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.486-486
    • /
    • 2000
  • This paper is concerned with a transfer alignment method for the SDINS(StrapDown Inertial Navigation System) under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonlinear measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

Analog Delay Locked Loop with Wide Locking Range

  • Yoo, Changsik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.3
    • /
    • pp.193-196
    • /
    • 2001
  • For wide locking range, an analog delay locked loop (DLL) was designed with the selective phase inversion scheme and the variable number of delay elements. The number of delay elements was determined adaptively depending on the clock cycle time. During the analog fine locking stage, a self-initializing 3-state phase detector was used to avoid the initial state problem associated with the conventional 3-state phase detector. With these schemes, the locking range of analog DLL was increased by four times compared to the conventional scheme according to the simulation results.

  • PDF

Stability of Time-Varying Discrete State Delay Systems (이산 시변 상태지연시스템의 안정성)

  • Suh, Young-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.2
    • /
    • pp.43-47
    • /
    • 2002
  • Stability conditions of time-varying discrete state delay systems are proposed. The time-varying state delay is assumed that (i) the magnitude is known to lie in a certain interval (ii) the upper bound of the rate of change is known. Under these conditions, new stability conditions are derived based on switched Lyapunov functions. Stability conditions for both fast time-varying and slowly time-varying delay are considered.