• Title/Summary/Keyword: State Classification

Search Result 948, Processing Time 0.028 seconds

Estimation of Leaf Wetness Duration Using An Empirical Model

  • Kim, Kwang-Soo;S.Elwynn Taylor;Mark L.Gleason;Kenneth J.Koehler
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2001.06a
    • /
    • pp.93-96
    • /
    • 2001
  • Estimation of leaf wetness duration (LWD) facilitates assessment of the likelihood of outbreaks of many crop diseases. Models that estimate LWD may be more convenient and grower-friendly than measuring it with wetness sensors. Empirical models utilizing statistical procedures such as CART (Classification and Regression Tree; Gleason et al., 1994) have estimated LWD with accuracy comparable to that of electronic sensors.(omitted)

  • PDF

Measurements of Impervious Surfaces - per-pixel, sub-pixel, and object-oriented classification -

  • Kang, Min Jo;Mesev, Victor;Kim, Won Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.303-319
    • /
    • 2015
  • The objectives of this paper are to measure surface imperviousness using three different classification methods: per-pixel, sub-pixel, and object-oriented classification. They are tested on high-spatial resolution QuickBird data at 2.4 meters (four spectral bands and three principal component bands) as well as a medium-spatial resolution Landsat TM image at 30 meters. To measure impervious surfaces, we selected 30 sample sites with different land uses and residential densities across image representing the city of Phoenix, Arizona, USA. For per-pixel an unsupervised classification is first conducted to provide prior knowledge on the possible candidate spectral classes, and then a supervised classification is performed using the maximum-likelihood rule. For sub-pixel classification, a Linear Spectral Mixture Analysis (LSMA) is used to disentangle land cover information from mixed pixels. For object-oriented classification several different sets of scale parameters and expert decision rules are implemented, including a nearest neighbor classifier. The results from these three methods show that the object-oriented approach (accuracy of 91%) provides more accurate results than those achieved by per-pixel algorithm (accuracy of 67% and 83% using Landsat TM and QuickBird, respectively). It is also clear that sub-pixel algorithm gives more accurate results (accuracy of 87%) in case of intensive and dense urban areas using medium-resolution imagery.

A New Support Vector Machine Model Based on Improved Imperialist Competitive Algorithm for Fault Diagnosis of Oil-immersed Transformers

  • Zhang, Yiyi;Wei, Hua;Liao, Ruijin;Wang, Youyuan;Yang, Lijun;Yan, Chunyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.830-839
    • /
    • 2017
  • Support vector machine (SVM) is introduced as an effective fault diagnosis technique based on dissolved gases analysis (DGA) for oil-immersed transformers with maximum generalization ability; however, the applicability of the SVM is highly affected due to the difficulty of selecting the SVM parameters appropriately. Therefore, a novel approach combing SVM with improved imperialist competitive algorithm (IICA) for fault diagnosis of oil-immersed transformers was proposed in the paper. The improved ICA, which is proved to be an effective optimization approach, is employed to optimize the parameters of SVM. Cross validation and normalizations were applied in the training processes of SVM and the trained SVM model with the optimized parameters was established for fault diagnosis of oil-immersed transformers. Three classification benchmark sets were studied based on particle swarm optimization SVM (PSOSVM) and IICASVM with four multiple classification schemes to select the best scheme for transformer fault diagnosis. The results show that the proposed model can obtain higher diagnosis accuracy than other methods. The comparisons confirm that the proposed model is an effective approach for classification problems.

Classification of Mental States Based on Spatiospectral Patterns of Brain Electrical Activity

  • Hwang, Han-Jeong;Lim, Jeong-Hwan;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.15-24
    • /
    • 2012
  • Classification of human thought is an emerging research field that may allow us to understand human brain functions and further develop advanced brain-computer interface (BCI) systems. In the present study, we introduce a new approach to classify various mental states from noninvasive electrophysiological recordings of human brain activity. We utilized the full spatial and spectral information contained in the electroencephalography (EEG) signals recorded while a subject is performing a specific mental task. For this, the EEG data were converted into a 2D spatiospectral pattern map, of which each element was filled with 1, 0, and -1 reflecting the degrees of event-related synchronization (ERS) and event-related desynchronization (ERD). We evaluated the similarity between a current (input) 2D pattern map and the template pattern maps (database), by taking the inner-product of pattern matrices. Then, the current 2D pattern map was assigned to a class that demonstrated the highest similarity value. For the verification of our approach, eight participants took part in the present study; their EEG data were recorded while they performed four different cognitive imagery tasks. Consistent ERS/ERD patterns were observed more frequently between trials in the same class than those in different classes, indicating that these spatiospectral pattern maps could be used to classify different mental states. The classification accuracy was evaluated for each participant from both the proposed approach and a conventional mental state classification method based on the inter-hemispheric spectral power asymmetry, using the leave-one-out cross-validation (LOOCV). An average accuracy of 68.13% (${\pm}9.64%$) was attained for the proposed method; whereas an average accuracy of 57% (${\pm}5.68%$) was attained for the conventional method (significance was assessed by the one-tail paired $t$-test, $p$ < 0.01), showing that the proposed simple classification approach might be one of the promising methods in discriminating various mental states.

Abnormality Detection of ECG Signal by Rule-based Rhythm Classification (규칙기반 리듬 분류에 의한 심전도 신호의 비정상 검출)

  • Ryu, Chun-Ha;Kim, Sung-Oan;Kim, Se-Yun;Kim, Tae-Hun;Choi, Byung-Jae;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.405-413
    • /
    • 2012
  • Low misclassification performance is significant with high classification accuracy for a reliable diagnosis of ECG signals, and diagnosing abnormal state as normal state can especially raises a deadly problem to a person in ECG test. In this paper, we propose detection and classification method of abnormal rhythm by rule-based rhythm classification reflecting clinical criteria for disease. Rule-based classification classifies rhythm types using rule-base for feature of rhythm section, and rule-base deduces decision results corresponding to professional materials of clinical and internal fields. Experimental results for the MIT-BIH arrhythmia database show that the applicability of proposed method is confirmed to classify rhythm types for normal sinus, paced, and various abnormal rhythms, especially without misclassification in detection aspect of abnormal rhythm.

Enhancing the Narrow-down Approach to Large-scale Hierarchical Text Classification with Category Path Information

  • Oh, Heung-Seon;Jung, Yuchul
    • Journal of Information Science Theory and Practice
    • /
    • v.5 no.3
    • /
    • pp.31-47
    • /
    • 2017
  • The narrow-down approach, separately composed of search and classification stages, is an effective way of dealing with large-scale hierarchical text classification. Recent approaches introduce methods of incorporating global, local, and path information extracted from web taxonomies in the classification stage. Meanwhile, in the case of utilizing path information, there have been few efforts to address existing limitations and develop more sophisticated methods. In this paper, we propose an expansion method to effectively exploit category path information based on the observation that the existing method is exposed to a term mismatch problem and low discrimination power due to insufficient path information. The key idea of our method is to utilize relevant information not presented on category paths by adding more useful words. We evaluate the effectiveness of our method on state-of-the art narrow-down methods and report the results with in-depth analysis.

A Study on Community Classification and Property Analysis for Space Planning of Elementary School -Focusing on the Seoul and Gyeonggi Province- (초등학교 공간계획을 위한 지역유형분류 및 특성분석 -서울·경기 지역을 중심으로-)

  • Lee, Sang Min
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.3 no.2
    • /
    • pp.21-37
    • /
    • 2003
  • This study has the purpose for analysis of each region's property in order to plan a elementary school's space according to community property. For this analysis. we used classification method through classification analysis. classification analysis is one of the useful statistical analysis methode for determining each region's policy through classifying regions which have a similar property. On this study, Seoul and Kyongkido is classified by 4 groups and each group has a different community property. Such a analysis is thought of helping establishing the objective. reasonable space-plan through comparative analysis between subjective claim and objective state indicator of each region.

  • PDF

Facial Expression Classification Using Deep Convolutional Neural Network

  • Choi, In-kyu;Ahn, Ha-eun;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.485-492
    • /
    • 2018
  • In this paper, we propose facial expression recognition using CNN (Convolutional Neural Network), one of the deep learning technologies. The proposed structure has general classification performance for any environment or subject. For this purpose, we collect a variety of databases and organize the database into six expression classes such as 'expressionless', 'happy', 'sad', 'angry', 'surprised' and 'disgusted'. Pre-processing and data augmentation techniques are applied to improve training efficiency and classification performance. In the existing CNN structure, the optimal structure that best expresses the features of six facial expressions is found by adjusting the number of feature maps of the convolutional layer and the number of nodes of fully-connected layer. The experimental results show good classification performance compared to the state-of-the-arts in experiments of the cross validation and the cross database. Also, compared to other conventional models, it is confirmed that the proposed structure is superior in classification performance with less execution time.

Hierarchical CNN-Based Senary Classification of Steganographic Algorithms (계층적 CNN 기반 스테가노그래피 알고리즘의 6진 분류)

  • Kang, Sanhoon;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.4
    • /
    • pp.550-557
    • /
    • 2021
  • Image steganalysis is a technique for detecting images with steganographic algorithms applied, called stego images. With state-of-the-art CNN-based steganalysis methods, we can detect stego images with high accuracy, but it is not possible to know which steganographic algorithm is used. Identifying stego images is essential for extracting embedded data. In this paper, as the first step for extracting data from stego images, we propose a hierarchical CNN structure for senary classification of steganographic algorithms. The hierarchical CNN structure consists of multiple CNN networks which are trained to classify each steganographic algorithm and performs binary or ternary classification. Thus, it classifies multiple steganogrphic algorithms hierarchically and stepwise, rather than classifying them at the same time. In experiments of comparing with several conventional methods, including those of classifying multiple steganographic algorithms at the same time, it is verified that using the hierarchical CNN structure can greatly improve the classification accuracy.

Scaling Up Face Masks Classification Using a Deep Neural Network and Classical Method Inspired Hybrid Technique

  • Kumar, Akhil;Kalia, Arvind;Verma, Kinshuk;Sharma, Akashdeep;Kaushal, Manisha;Kalia, Aayushi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3658-3679
    • /
    • 2022
  • Classification of persons wearing and not wearing face masks in images has emerged as a new computer vision problem during the COVID-19 pandemic. In order to address this problem and scale up the research in this domain, in this paper a hybrid technique by employing ResNet-101 and multi-layer perceptron (MLP) classifier has been proposed. The proposed technique is tested and validated on a self-created face masks classification dataset and a standard dataset. On self-created dataset, the proposed technique achieved a classification accuracy of 97.3%. To embrace the proposed technique, six other state-of-the-art CNN feature extractors with six other classical machine learning classifiers have been tested and compared with the proposed technique. The proposed technique achieved better classification accuracy and 1-6% higher precision, recall, and F1 score as compared to other tested deep feature extractors and machine learning classifiers.