• Title/Summary/Keyword: Starting torque

Search Result 206, Processing Time 0.029 seconds

Sensorless Vector Control of a Wound Induction Motor Using MRAS with On-Line Stator Resistance Tuning

  • Lee Jae-Hak;Kim Yoon-Ho;Lee Houng-Gyun;Woo Hyuk-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.462-465
    • /
    • 2001
  • The wound induction motor can provide high starting torque and reduced starting current simultaneously by inserting large scale resistor. And this technique is one of the well known methods among the induction motor starting methods and generally used for heavy load starting such as Crain and Cement factories. The conventional PI controller has been widely used in industrial application due to the simple control algorithm and in general, PI controller is used for control of current, torque, position, and speed for the wound induction motor drive system. However, the system may result in poor performance since sensors have to be used, which in turn is limited by the environmental condition. Recently, to overcome these problems, many sensorless vector control methods for the wound induction motor have been studied. This paper presents MRAS method with on-line stator resistance tuning for sensorless vector control of the wound induction motor drive. In conventional MRAS method, in low frequency, stator resistance variation can result in poor performance. Therefore, to overcome several shortages of the conventional MRAS caused by parameter variation and enhance robustness of the sensor less vector control, this paper investigates a MRAS method with on-line stator resistance tuning for sensorless vector control of the wound induction motor. The validity and effectiveness of the proposed method is verified through digital simulation.

  • PDF

SIMULATION OF STARTING PROCESS OF DIESEL ENGINE UNDER COLD CONDITIONS

  • Park, J.K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.289-298
    • /
    • 2007
  • A nonlinear dynamic simulation model from cranking to idle speed is developed to optimize the cold start process of a diesel engine. Physically-based first order nonlinear differential equations and some algebraic equations describing engine dynamics and starter motor dynamics are used to model the performance of cold starting process which is very complex and involves many components including the cold start aiding method. These equations are solved using numerical schemes to describe the starting process of a diesel engine and to study the effects of cold starting parameters. The validity of this model is examined by a cold start test at $-20^{\circ}C$. Using the developed model the effects of the important starting variables on the cold starting processes were investigated. This model can be served as a tool for designing computer aided control systems that improve cold start performance.

Conduction Bar Design to Improve Starting Stability of Line Start Synchronous Reluctance Motor (직립 기동형 동기 릴럭턴스 전동기의 기동 안정성 개선을 위한 도체바 설계)

  • Nam, Hyuk;Hong, Jung-Pyo;Jung, Tae-Uk
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.3
    • /
    • pp.131-137
    • /
    • 2006
  • This paper deals with the conductor bar design to improve starting stability of line start synchronous reluctance motor(LSSynRM). As design variables, the number and the shape of conductor bars of rotor are chosen. The starting characteristics are calculated by finite element method(FEM) and the conductor bars are designed to improve the starting torque according to the initial starting rotor position. Finally, the starting characteristic of the designed model are compared with that of the initial model.

Induction Motor Starting Characterization with Power Factor Correction Capacitors (역률개선 콘덴서를 이용한 유도전동기 기동특성 분석)

  • Son, Seok-Geum
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.3
    • /
    • pp.206-212
    • /
    • 2017
  • Induction motor torque is the reactive power is needed which corresponds to the exciting current to generate the magnetic flux as the product of current and flux. For use in the method of supplying the required reactive power to the induction motor power factor correction apparatus using a lot of ways to supply in place of the power supply side, when using a power factor compensation device can reduce the apparent power, the power factor can be improved. However, the distance to the emergency generator transformers or motors from the motor capacity is smaller but short and difficult to maneuver the theory and practice of the operating characteristics of the starting characteristics of the motor used a lot of large industrial plants were measured and analyzed. Therefore, this study investigated the motor starting Analysis and interpretation for the relationship with the large motor starting torque and speed during motor starting.

Analysis of Torque Characteristics for the Single-phase Induction Motor Considering Space Harmonics

  • Kim Byung-Taek;Lee Sung-Ho;Kwon Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.327-331
    • /
    • 2006
  • This paper presents the analysis method for the torque characteristic of the 1-phase induction motor considering space harmonics in the air gap. The equivalent circuit method is used, where the circuit constants are obtained by classic theory. In addition, the space harmonic components in air gap magneto motive force are analyzed and added to the equivalent circuit to obtain accurate torque characteristics in low speed regions. Each torque component due to the harmonics is calculated and the total torque characteristic is obtained and compared with the measurement result.

Optimum Design Criteria for Maximum Torque Density and Minimum Torque Ripple of Flux Switching Motor using Response Surface Methodology

  • Lee, Jung-Ho;Lee, Tae-Hoon
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.74-77
    • /
    • 2010
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of a Flux Switching Motor (FSM) using response surface methodology (RSM) & finite element method (FEM). The focus of this paper is to find a design solution through the comparison of torque density and torque ripple which vary with rotor shape. And then, a central composite design (CCD) mixed resolution was introduced and analysis of variance (ANOVA) was conducted to determine the significance of the fitted regression model. The proposed procedure allows one to define the rotor dimensions, starting from an existing motor or a preliminary design.

The Practical Method and Experimental Verification of Temperature Estimation in the Permanent Magnet of Electric Machine

  • Kang, Kyongho;Yu, Sukjin;Lee, Geunho;Lee, Byeong-Hwa
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.421-426
    • /
    • 2015
  • This paper presents a practical method for estimation of average temperature in the permanent magnet (PM) of electric machine by using finite element analysis (FEA) and dynamo load experiment. First of all, the temperature effect of PM to the torque has been employed by FEA in order to evaluate the Temperature-Torque characteristic curve. The 1st order polynomial equation which is torque attenuation coefficient is derived by the FEA result of the Temperature-Torque curve. Next, torque saturation test with constant current condition is performed by dynamo load experiment. Then, the temperature trend can be estimated by adding the initial starting temperature using the torque attenuation coefficient and torque saturation curve. Lastly, estimated temperature is validated by infrared thermometer which measures temperature of PM surface. The comparison between the estimated result and experimental result gives a good agreement within a deviation of maximum $8^{\circ}C$.

An analysis on the torque of hysteresis-motor concerned with penetration-effect of magnetic -field and eddy-current (자계 및 와전류 침수효과를 고려한 히스테리시스 전동기의 토오크에 대한 해석법)

  • 정연택
    • 전기의세계
    • /
    • v.29 no.9
    • /
    • pp.594-598
    • /
    • 1980
  • This paper describes an analytical method on the starting torque of hysteresis motor, taking account of penetration effects of magnetic-field and eddy-current into the rotor, to the elliptical approximation method of hysteresis-loop. By the above method, it have obtained the torque of rotor ring with non-magnetic and non-conductive material arbor, and the results are concerned and compared with that of computed by aid of callibration factor, k=1+exp(-2t$_{r}$/.delta.).)

  • PDF

Novel Starting Method of High Speed Induction Motor for Turbo Blowers (터보 블로워용 고속 유도전동기의 새로운 기동방법)

  • Lee, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.253-254
    • /
    • 2016
  • This paper proposes a novel starting method of a high speed induction motor with air bearings for turbo blowers. The friction of air bearings varies according to rotating speed, operating temperature and usage time. Specially, friction torque at initial starting state under low bearing temperature usually results in starting failures of the conventional V/F control method. Therefore, this paper proposes a new starting method, which consists of an initial I/F control mode and smooth transition method to V/F control mode to overcome the starting failure. The experimental results are shown to verify the analysis and the usefulness of the proposed method.

  • PDF

Characteristics Analysis for Reactor Starting Method of 3-Phase Induction Motor Considering Saturation (포화성분을 고려한 3상 유도전동기 리액터 기동 특성 분석)

  • Kim, Jong-Gyeum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.65-70
    • /
    • 2012
  • Induction motor is the most widely used to obtain the driving force in the industrial site. Induction motor generates a high current at startup. Most of starting currents are often more than five times of rated current. This high starting current can cause problems such as the voltage drop in the system. In order to solve these problems, if the motor capacity is large, generally we use reactor starting method rather than direct on line starting method. When a high startup current passes through reactor, reactor can serve as a nonlinear elements. In this study, we analyzed that the current, torque and power of the induction motor are different from the change of linear and nonlinear components of the reactor magnetic field.