• Title/Summary/Keyword: Stars

Search Result 1,611, Processing Time 0.028 seconds

TRIGONOMETRIC DISTANCE AND PROPER MOTION OF IRAS 20056+3350: A MASSIVE STAR FORMING REGION ON THE SOLAR CIRCLE

  • BURNS, ROSS A.;NAGAYAMA, TAKUMI;HANDA, TOSHIHIRO;OMODAKA, TOSHIHIRO;NAKAGAWA, AKIHARU;NAKANISHI, HIROYUKI;HAYASHI, MASAHIKO;SHIZUGAM, MAKOTO
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.121-123
    • /
    • 2015
  • We report our measurements of the trigonometric distance and proper motion of IRAS 20056+3350, obtained from the annual parallax of $H_2O$ masers. Our distance of $D=4.69^{+0.65}_{-0.51}kpc$, which is 2.8 times larger than the near kinematic distance adopted in the literature, places IRAS 20056+3350 at the leading tip of the Local arm and proximal to the Solar circle. We estimated the proper motion of IRAS 20056+3350 to be (${\mu}_{\alpha}cos{\delta}$, ${\mu}_{\delta}$) = ($-2.62{\pm}0.33$, $-5.65{\pm}0.52$) $mas\;yr^{-1}$ from the group motion of $H_2O$ masers, and use our results to estimate the angular velocity of Galactic rotation at the Galactocentric distance of the Sun, ${\Omega}_0=29.75{\pm}2.29km\;s^{-1}kpc^{-1}$, which is consistent with the values obtained for other tangent points and Solar circle objects.

ASTRONOMY WITH SMALL TELESCOPES

  • SINGH, K. YUGINDRO;MEITEI, I. ABLU;SINGH, S. AJITKUMAR;SINGH, R.K. BASANTAKUMAR
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.741-743
    • /
    • 2015
  • We have designed and built three cost effective observatories, in distinct models, which can house Schmidt-Cassegrain type small telescopes having aperture sizes up to 16 inches. Using the available small telescopes, we provided the people of Manipura State in the far north-east corner of India the opportunity to observe directly with their own eyes the rare, spectacular events of the solar eclipse of January 15, 2010, lunar eclipse of December 10, 2011 and the transit of Venus of June 6, 2012. Apart from sharing a platform with the public for astronomy education and popularization through public outreach programs such as workshops, seminars and night watch programs, we have also developed a laboratory infrastructure and gained expertise in observational techniques based on photoelectric photometry, CCD imaging, CCD photometry and spectroscopy. Our team has become a partner in the ongoing international 'Orion project' headquartered in Phoenix, Arizona, USA which will be producing high quality photometric and spectroscopic data for five stars in the Orion constellation, namely Betelgeuse (alpha Orionis), Rigel (beta Orionis), Mintaka (delta Orionis), Alnilam (epsilon Orionis) and Alnitak (zeta Orionis). In the present paper, the authors would like to give a detailed report of their activities for the growth of astronomy in the state of Manipur, India.

PREDICTION OF THE DETECTION LIMIT IN A NEW COUNTING EXPERIMENT

  • Seon, Kwang-Il
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.4
    • /
    • pp.99-107
    • /
    • 2008
  • When a new counting experiment is proposed, it is crucial to predict whether the desired source signal will be detected, or how much observation time is required in order to detect the signal at a certain significance level. The concept of the a priori prediction of the detection limit in a newly proposed experiment should be distinguished from the a posteriori claim or decision whether a source signal was detected in an experiment already performed, and the calculation of statistical significance of a measured source signal. We formulate precise definitions of these concepts based on the statistical theory of hypothesis testing, and derive an approximate formula to estimate quickly the a priori detection limit of expected Poissonian source signals. A more accurate algorithm for calculating the detection limits in a counting experiment is also proposed. The formula and the proposed algorithm may be used for the estimation of required integration or observation time in proposals of new experiments. Applications include the calculation of integration time required for the detection of faint emission lines in a newly proposed spectroscopic observation, and the detection of faint sources in a new imaging observation. We apply the results to the calculation of observation time required to claim the detection of the surface thermal emission from neutron stars with two virtual instruments.

My Research on Galaxies, Large-Scale Structures in the Universe, and Cosmic Microwave Background Radiation

  • Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.67-67
    • /
    • 2012
  • Exploring the distant universe by observing various astronomical objects and extending knowledge on the cosmos by applying human intuition and reasoning to observations are astronomers' professional activity. Astronomers are the people born under a lucky star since this elegant and beautiful job is their the only duty. Being in the 21st century we astronomers now know that galaxies are holding evolving stars and gas, and distribute in the infinite spacetime in an interesting way revealing the secrets of the beginning of the universe. Cosmic structures such as galaxies, large-scale structures, and cosmic microwave background fluctuations are also the tracers of the expansion of space and the invisible components of the energy contents of the universe. Unlike the past century we are in a situation where integral knowledge on various cosmic structures as well as that on a variety of observational and analysis tools are available to everyone and often required for our special mission. However, my experience made me think that accumulating critical questions on nature driven by curiosity is vital for researchers and far more important than absorbing knowledge from others and books. Transforming one's own question marks to acclamation marks is the reward of our life. That is THE fun.

  • PDF

HIGH-RESOLUTION NEAR-INFRARED SPECTRA OF NEARBY QUASARS

  • Le, Huynh Anh Nguyen;Pak, Soojong;Im, Myungshin;Ho, LuisC.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.91-91
    • /
    • 2012
  • We present high-resolution near-infrared host galaxy spectra of low-z quasars, PG0844+349 (z=0.064), PG1226+023 (z=0.158), and PG1426+015 (z=0.086). The observation was done by using the near-IR high resolution echelle spectrometer, IRCS, at the SUBARU 8.2 m telescope. The full width at half maximum of the point spread function was about 0.3 arcsec by using an Adaptive Optics system, which can effectively resolve the quasar spectra from the host galaxy spectra. The signal-to-noise ratios are increased by the total exposure time up to several hours per targets and the development of data reduction method. We compare our results to the stellar spectra library and sample spectra from Dasyra et al. (2007) and Watson et al. (2008). The identified spectral lines will be used to study the physical mechanism of quasars, and the velocity dispersions of the stars in the bulge of the host galaxy.

  • PDF

SPICA 탑재용 근적외선카메라 FPC 개발 현황

  • Lee, Dae-Hui;Jeong, Ung-Seop;Han, Won-Yong;Mun, Bong-Gon;Park, Yeong-Sik;Park, Gwi-Jong;Nam, Uk-Won;Pyo, Jeong-Hyeon;Lee, Deok-Haeng;Park, Won-Gi;Kim, Il-Jung;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.204.2-204.2
    • /
    • 2012
  • FPC (Fine-guiding and astroPhysics Camera)는 일본 ISAS/JAXA, 유럽 ESA에서 공동 개발하는 대형적외선우주망원경 SPICA (Space Infrared Telescope for Cosmology and Astrophysics)에 탑재하기 위하여 천문연이 주도하는 한국의 컨소시움에서 개발을 추진하고 있는 정밀 근적외선 카메라이다. FPC는 과학적 목적을 위한 FPC-S와 정밀 자세결정을 위한 FPC-G로 이루어져 있으며 관측 파장 대역은 0.7-5 um이다. FPC-G는 0.05 각초의 초정밀 자세 결정을 위한 기능을 갖추고 있으며, FPC-S는 선형변화필터 LVF (Linear Variable Filter) 등을 사용하여 Pop III stars, High-redshift 영역에서의 별탄생 및 은하 진화 과정에 대한 연구를 수행할 수 있다. FPC는 상대적으로 시스템 자원을 덜 소모하기 때문에, 다른 중 적외선 원적외선 기기와 동시 관측이 가능하다. 다른 기기들과의 잘 짜여진 협력 관측을 통하여, FPC의 활용도를 높일 계획이다.

  • PDF

Asymmetric Light curves of Contact and Near-Contact Binaries

  • Rittipruk, Pakakaew;Kang, Young-Woon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.143.1-143.1
    • /
    • 2012
  • We attempt to investigate the main reason of the asymmetrical light curves of contact and near-contact eclipsing binary base on the hypothesis that cool spot was produced on late type star while hot spot was produced from transferred material from their companion star hitting surface. We select 7 eclipsing binary systems which showed asymmetric light curves and mass transfer. Period variation and mass transfer rate were obtained from O-C diagram. Radial velocity curves and light curves of those 7 eclipsing binary system were adopted from available literature in order to obtain the absolute dimension. For four contact eclipsing binary system (AD Phe, EZ Hya, AG Vir and VW Boo), their component stars belonged to spectral type G to K was fitted by cool spot model. While the other two near-contact systems (RT Scl and V1010 Oph) and one contact system (SV Cen) was fitted by cool spot model. The densities of the materials are adopted from stellar model which calculate by stellar structure code. The calculated spot temperature turns out to agree with the photometric solution but there are no correlate between period variation rate and type of spot.

  • PDF

Gas Outflow in SDSS AGN-host Galaxies

  • Bae, Hyun-Jin;Woo, Jong-Hak;Oh, Semyeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.85.1-85.1
    • /
    • 2012
  • Energetic outflow from active galactic nuclei (AGNs) may play a critical role in galaxy evolution. We present a velocity diagnostics for detecting gas outflow in the narrow-line region of Type-2 AGNs using line-of-sight velocity offset of the [O III]${\lambda}5007$ and $H{\alpha}$ emission lines with respect to the systemic velocity of stars in host galaxies. We apply the diagnostics to nearby galaxies at 0.02 < z < 0.05: 3775 AGN-host and 907 star-forming galaxies as a comparison sample, which are selected from the Sloan Digital Sky Survey DR7. After obtaining a best-fit stellar population model for the continuum and a systemic velocity based on stellar lines, we subtract stellar component to measure velocity offsets of each emission line. We find a sample of 169 AGN-host galaxies with outflow signatures, displaying a larger velocity shift of [O III] than that of $H{\alpha}$, as expected in a decelerating outflow model. We find that the offset velocity of [O III] increases with Eddington ratio, suggesting that gas outflow depends on the energetics of AGN.

  • PDF

IRAS 09425-6040: A Silicate Carbon Star with Crystalline Dust

  • Suh, Kyung-Won;Kwon, Young-Joo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.140.2-140.2
    • /
    • 2012
  • The silicate carbon star IRAS 09425-6040 shows very conspicuous crystalline silicate dust features and excessive emission at far infrared. To investigate properties of dusty envelopes around the object, we use radiative transfer models for axisymmetric and sphericallly symmetric dust distributions. We perform model calculations for various possible combinations of dust shells and disks with various dust species. We compare the model results with the observed spectral energy distributions (SEDs) including the IRAS, ISO, AKARI, MSX and 2MASS data. We find that a model with multiple disks of amorphous and crystalline silicate and multiple spherical shells of carbon dust can reproduce the observed SED fairly well. This supports the scenario for the origin of silicate carbon stars that oxygen-rich material was shed by mass loss when the primary star was an M giant and the O-rich material is stored in a circumbinary disk. Highly (about 75 %) crystallized forsterite dust in the disk can reproduce the conspicuous crystalline features of the ISO observational data. This object looks to have a detached silicate and H2O ice shell with a much higher mass-loss rate. It could be a remnant of the chemical transition phase. The last phase of stellar winds of O-rich materials looks to be a superwind.

  • PDF

A likely exoplanet around F5 supergiant ${\alpha}$ Persei near the Cepheid instability strip

  • Lee, Byeong-Cheol;Han, In-Woo;Park, Myeong-Gu;Kim, Kang-Min
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • To search for and study the nature of the long-periodic variations of massive stars, we have been carrying out a precise radial velocity (RV) survey for supergiants. Here, we present high-resolution RV measurements of ${\alpha}$ Per which lies near the Cepheid instability strip from November 2005 to February 2011 using the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory (BOAO). The orbital solution yields a period of 129 days, a 2K amplitude of 80 m/s, and an eccentricity of 0.1. Assuming a possible stellar mass of 7.3 $M{\bigodot}$, we estimate the minimum mass for the planetary companion to be 7.5 MJup with the orbital semi-major axis of 0.97 AU. We do not find the correlation between RV variations and chromospheric activity indicator (Ca II H & K region). The Hipparcos photometry and bisector velocity span (BVS) do not show any obvious correlations with RV variations. These analyses suggest that ${\alpha}$ Per is a pulsating supergiant that hosts an exoplanet. If the 129 days variations of ${\alpha}$ Per do not come from an exoplanet but Cepheid-like pulsations, the theoretical boundary of the Cepheid instability strip may need to be extended to the bluer side.

  • PDF