• Title/Summary/Keyword: Starch Digestion

Search Result 118, Processing Time 0.029 seconds

Raw Starch-digesting Amylase is Comprised of two Distinct Domains of Catalytic and Substrate-Adsorbable Domain: Role of the C- Terminal Region in Raw-Starch-Binding

  • Kim, Cheorl-Ho
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.40-45
    • /
    • 2001
  • Raw starch-digesting amylase (BF-2A, M.W. 93, 000 Da) from Bacillus circulans F-2 was converted to two components during digestion with subtilisin. Two components were separated and designated as BF-2A' (63, 000 Da) and BF-2B (30, 000 Da), respectively. BF-2A' exhibited the same hydrolysis curve for soluble starch as the original amylase (BF-2A). Moreover, the catalytic activities of original and modified enzymes were indistinguishable in $K_{m}$, Vmax for, and in their specific activity for soluble starch hydrolysis. However, its adsorbability and digestibility on raw starch was greatly decreased. Furthermore, the enzymatic action pattern on soluble starch was greatly different from that of the BF-2A. A smaller peptide (BF-2B) showed adsorb ability onto raw starch. By these results, it is suggested that the larger peptide (BF-2A') has a region responsible for the expression of the enzyme activity to hydrolyze soluble substrate, and the smaller peptide (BF-2B) plays a role on raw starch adsorption. A similar phenomenon is observed during limited proteinase K, thermolysin, and endopeptidase Glu-C proteolysis of the enzyme. Fragments resulting from proteolysis were characterized by immunoblotting with anti-RSDA. The proteolytic patterns resulting from proteinase K and subtilisin were the same, producing 63- and 30-kDa fragments. Similar patterns were obtained with endopeptidase Glu-C or thermolysin. All proteolytic digests contained a common, major 63-kDa fragment. Inactivation of RSDA activity results from splitting off the C-terminal domain. Hence, it seems probable that the protease sensitive locus is in a hinge region susceptible to cleavage. Extracellular enzymes immunoreactive toward anti-RSDA were detected through whole bacterial cultivation. Proteins of sizes 93-, 75-, 63-, 55-, 38-, and 31-kDa were immunologically identical to RSDA. Of these, the 75-kDa and 63-kDa proteins correspond to the major products of proteolysis with Glu-C and thermolysin. These results postulated that enzyme heterogeneity of the raw starch-hydrolysis system might arise from the endogeneous proteolytic activity of the bacterium. Truncated forms of rsda, in which the gene sequence encoding the conserved domain had been deleted, directed the synthesis of a functional amylase that did not bind to raw starch. This indicates that the conserved region of RSDA constitutes a raw starch-binding domain, which is distinct from the active centre. The possible role of this substrate-binding region is discussed.d.

  • PDF

Structural and Solubility Characteristics of Coenzyme Q10 Complexes Including Cyclodextrin and Starch (사이클로덱스트린과 전분을 이용한 coenzyme Q10 복합체의 특성 연구)

  • Lee, Joon-Kyoung;Lee, Hyun-Joo;Lim, Jae-Kag
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.180-188
    • /
    • 2014
  • This study focused on assessing the solubility and structural characteristics of two types of coenzyme $Q_{10}$ ($CoQ_{10}$) complexes: the $CoQ_{10}$-starch and the $CoQ_{10}$-cyclodextrin complexes. The solubility of $CoQ_{10}$-starch complex increased significantly as the temperature was increased. However, the solubility of $CoQ_{10}$-cyclodextrin complex reached a peak at $37^{\circ}C$, and strong aggregation occurred at $50^{\circ}C$. When the temperature was raised to $80^{\circ}C$, the $CoQ_{10}$-cyclodextrin complex dissociated owing to the weakening of bonds, resulting in $CoQ_{10}$ emerging at the surface of water. Therefore, $CoQ_{10}$-cyclodextrin complexes have lower solubility, due to their reduced heat-stability, than do the $CoQ_{10}$-starch complexes. Structural differences between the two $CoQ_{10}$ complexes were confirmed by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometer (XRD), and differential scanning calorimeter (DSC). The $CoQ_{10}$-cyclodextrin complex included an isoprenoid chain of $CoQ_{10}$, while the $CoQ_{10}$-starch complex included both the benzoquinone ring and the isoprenoid chain of $CoQ_{10}$. These results suggest that $CoQ_{10}$-starch complexes possess higher heat-stability and solubility than do the $CoQ_{10}$-cyclodextrin complexes.

Properties of an Extracellular Amylase Produced by the Marine Halophilic Bacterium Vibrio alginolyticus (해양 호염성 세균 Vibrio alginolyticus가 생산하는 Extracellular Amylase의 특성)

  • 김영재
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.3
    • /
    • pp.203-207
    • /
    • 1999
  • V. alginolyticus 138-2, a marine halophilic bacterium, produced an extracellular amylase with a molecular weight of ca. 56,000. The analysis of the digestion products of soluble starch by thin layer chromatography(TLC) revealed that the extracellular amylase of V. alginolyticus 138-2 is a saccharifying-type alpha-amylase. The alpha-amylase activity of the culture supernatant of soluble starch was optimal at pH 6.0 and 45$^{\circ}C$. Ca2+ slightly increased the alpha-amylase activity, whereas Hg2+, An2+, Cu2+, Ni2+, Fe2+, and Mn2+inhibited the enzymatic activity. Alkylating thiol group agent, iodoacetic acid did not affect the alpha-amylase activity, but reduced thiol reagents such as dithiothreitol, cysteine, and beta-mercaptoethanol stimulated theenzymatic activity. On the other hand, even if V. alginolyticus 138-2 is a marine halophilic bacterium, its alpha-amylase activity was significantly inhibited by NaCl.

  • PDF

Properties of Lintnerized Rice Starches (산 처리 쌀 전분의 성질)

  • Park, Yang-Kyun;Kim, Sung-Kon;Kim, Kwan
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.62-67
    • /
    • 1991
  • The characteristics of Tongjinbyeo(Japonica) and Samgangbyeo($J{\times}Indica$) rice starches including physicochemical properties, differential scanning calorimetry and enzymatic digestion of lintnerized starches were investigated. Degree of hydrolysis of Tongjinbyeo starch with 2.2N HCI for 48 hr was higher than that of Samgangbyeo starch. Apparent first order reaction of starches was slow reaction for first period, and fast reaction second period on the datum point of acid treatment 24 hr. Absorbance at ${\lambda}_{max}$ and 680 nm, and ${\lambda}_{max}$ of iodine stained starch and amylose content decreased upon acid treatment. But water binding capacity, swelling power and solubility considerably increased as hydrolysis progressed. Relative crystallinity of two starches increased with acid treatment, and that of Tongjinbyeo starch was higher than that of Samgangbyeo starch. Differential scanning colorimetry(DSC) data continuously decreased for lintnerization periods, and those of Tongjinbyeo starch have higher than those of Samgangbyeo starch. The onset temperature of starch by DSC continuously decreased by treatment, but conclusion temperature increased until 24 hr and then decreased. The enthalpy for gelatinization decreased for both starches. Degree of hydrolysis of lintnerized Tongjinbyeo starch with glucoamylase was slightly higher than that of Samgangbyeo starch.

  • PDF

Influence of ruminal degradable intake protein restriction on characteristics of digestion and growth performance of feedlot cattle during the late finishing phase

  • May, Dixie;Calderon, Jose F.;Gonzalez, Victor M.;Montano, Martin;Plascencia, Alejandro;Salinas-Chavira, Jaime;Torrentera, Noemi;Zinn, Richard A.
    • Journal of Animal Science and Technology
    • /
    • v.56 no.4
    • /
    • pp.14.1-14.7
    • /
    • 2014
  • Two trials were conducted to evaluate the influence of supplemental urea withdrawal on characteristics of digestion (Trial 1) and growth performance (Trial 2) of feedlot cattle during the last 40 days on feed. Treatments consisted of a steam-flaked corn-based finishing diet supplemented with urea to provide urea fermentation potential (UFP) of 0, 0.6, and 1.2%. In Trial 1, six Holstein steers ($160{\pm}10kg$) with cannulas in the rumen and proximal duodenum were used in a replicated $3{\times}3$ Latin square experiment. Decreasing supplemental urea decreased (linear effect, $P{\leq}0.05$) ruminal OM digestion. This effect was mediated by decreases (linear effect, $P{\leq}0.05$) in ruminal digestibility of NDF and N. Passage of non-ammonia and microbial N (MN) to the small intestine decreased (linear effect, P = 0.04) with decreasing dietary urea level. Total tract digestion of OM (linear effect, P = 0.06), NDF (linear effect, P = 0.07), N (linear effect, P = 0.04) and dietary DE (linear effect, P = 0.05) decreased with decreasing urea level. Treatment effects on total tract starch digestion, although numerically small, likewise tended (linear effect, P = 0.11) to decrease with decreasing urea level. Decreased fiber digestion accounted for 51% of the variation in OM digestion. Ruminal pH was not affected by treatments averaging 5.82. Decreasing urea level decreased (linear effect, $P{\leq}0.05$) ruminal N-NH and blood urea nitrogen. In Trial 2, 90 crossbred steers ($468kg{\pm}8$), were used in a 40 d feeding trial (5 steers/pen, 6 pens/treatment) to evaluate treatment effects on final-phase growth performance. Decreasing urea level did not affect DMI, but decreased (linear effect, $P{\leq}0.03$) ADG, gain efficiency, and dietary NE. It is concluded that in addition to effects on metabolizable amino acid flow to the small intestine, depriving cattle of otherwise ruminally degradable N (RDP) during the late finishing phase may negatively impact site and extent of digestion of OM, depressing ADG, gain efficiency, and dietary NE.

The Effect of Variety and Growing Conditions on the Chemical Composition and Nutritive Value of Wheat for Broilers

  • Ball, M.E.E.;Owens, B.;McCracken, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.378-385
    • /
    • 2013
  • The aim of this study was to examine the effect of variety and growing conditions of wheat on broiler performance and nutrient digestibility. One hundred and sixty-four wheat samples, collected from a wide range of different sources, locations, varieties and years, were analyzed for a range of chemical and physical parameters. Chemical and physical parameters measured included specific weight, thousand grain weight (TG), in vitro viscosity, gross energy, N, NDF, starch, total and soluble non-starch polysaccharides (NSP), lysine, threonine, amylose, hardness, rate of starch digestion and protein profiles. Ninety-four of the wheat samples were selected for inclusion in four bird trials. Birds were housed in individual wire metabolizm cages from 7 to 28 d and offered water and feed ad libitum. Dry matter intake (DMI), live weight gain (LWG) and gain:feed were determined weekly. A balance collection was carried out from 14 to 21 d for determination of apparent metabolizable energy (AME), ME:gain, DM retention, oil and NDF digestibility. At 28 d the birds were sacrificed, the contents of the jejunum removed for determination of in vivo viscosity and the contents of the ileum removed for determination of ileal DM, starch and protein digestibility. The wheat samples used in the study had wide-ranging chemical and physical parameters, leading to bird DMI, LWG, gain:feed, ME:GE, AME content and ileal starch and protein digestibility being significantly (p<0.05) affected by wheat sample. A high level of N fertilizer application to the English and NI wheat samples tended to benefit bird performance, with increases of up to 3.4, 7.2 and 3.8% in DMI, LWG and gain:feed, respectively. Fungicide application also appeared to have a positive effect on bird performance, with fungicide treated (+F) wheat increasing bird DMI, LWG and gain:feed by 6.6, 9.3 and 2.7%, over the non-fungicide treated (-F) wheats. An increase (p<0.1) of 9.3% in gain:feed was also observed at the low seed rate of 40 compared to 640 seeds/$m^2$. It was concluded that the type of wheat sample and environmental growing conditions significantly affects bird performance when fed wheat-based diets.

Molecular Cloning and Determination of the Nucleotide Sequence of Raw Starch Digesting α-Amylase from Aspergillus awamori KT-11

  • Matsubara, Takayoshi;Ammar, Youssef Ben;Anindyawati, Trisanti;Yamamoto, Satoru;Ito, Kazuo;Iizuka, Masaru;Minamiura, Noshi
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.429-438
    • /
    • 2004
  • Complementary DNAs encoding $\alpha$-amylases (Amyl I, Amyl III) and glucoamylase (GA I) were cloned from Aspergillus awamori KT-11 and their nucleotide sequences were determined. The sequence of Amyl III that was a raw starch digesting $\alpha$-amylase was found to consist of a 1,902 bp open reading frame encoding 634 amino acids. The signal peptide of the enzyme was composed of 21 amino acids. On the other hand, the sequence of Amyl I, which cannot act on raw starch, consisted of a 1,500 bp ORF encoding 499 amino acids. The signal peptide of the enzyme was composed of 21 amino acids. The sequence of GA I consisted of a 1,920 bp ORF that encoded 639 amino acids. The signal peptide was composed of 24 amino acids. The amino acid sequence of Amyl III from the N-terminus to the amino acid number 499 showed 63.3% homology with Amyl I. However, the amino acid sequence from the amino acid number 501 to C-terminus, including the raw-starch-affinity site and the TS region rich in threonine and serine, showed 66.9% homology with GA I.

Convergence Study on the Optimization for Suppression of Starch Hydrolysis using Rutin, Quercetin and Dietary Fiber Mixture Design (루틴, 퀘르세틴, 식이섬유 혼합물 설계를 이용한 전분소화 지연 효과의 최적화에 대한 융합 연구)

  • Oh, Imkyung;Bae, In Young
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.5
    • /
    • pp.35-41
    • /
    • 2020
  • This study was conducted to develop the efficient system for starch hydrolysis suppression using rutin, quercetin and dietary fiber through the statistical mixture design. The three components were replaced with wheat flour at the level of 10% and the mixed gel with three components was characterized by in vitro starch digestion. The mixture design was applied by simplex-centroid experimental model. The quadratic model (R2=0.86) was well fitted and the obtained regression equation indicated that the significant positive effects was observed in the quercetin and fiber mixture. Based on the statistical results, the best mixing ratio of quercetin and fiber was 72: 28 that led to the lowest predicted glycemic index (pGI). Their interactions on the pGI of starch digestibility were clearly visualized in the 3D surface plot. These results suggested that the mixture of quercetin and fiber interact strongly with wheat flour, consequently retarding starch hydrolysis by 15%.

Strategic Use of QTL Mapping to Improve the Palatability of Rice

  • Yoon-Hee Jang;Jae-Ryoung Park;Eun-Gyeong Kim;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.286-286
    • /
    • 2022
  • The properties of starch play an important role in determining the palatability of rice. In addition, the gelatinization temperature (GT) of rice starch is an important factor in determining the quality of rice because it is related to the cooking time and texture of rice. For the development of high-quality rice, it is important to understand the genetic basis of palatability-related traits, and QTL analysis is an effective method to explain the genetic basis of variation in complex traits. QTL mapping related to alkali digestion value (ADV) of brown and milled rice was performed using the 120 Cheongcheong/Nagdong double haploid (CNDH) line. As a result, 12 QTLs related to ADV were detected, and 20 candidate genes were selected from the RM588-RM1163 region of chromosome 6 through screening by gene function analysis. The comparison of the relative expression level of candidate genes showed that OsSS1q6 is highly expressed in CNDH lines with high ADV in both brown rice and milled rice. In addition, OsSS1q6 has high homology with starch synthase 1 protein, and interact with various starch biosynthesis-related proteins, such as GBSSII, SBE, and APL. Therefore, we suggest that OsSS1q6 identified through QTL mapping could be one of the various genes involved in the GT of rice by regulating starch biosynthesis. This study can be used as basic data for breeding high-quality rice and provides a new genetic resource that can increase the palatability of rice.

  • PDF