• Title/Summary/Keyword: Starch Digestion

Search Result 118, Processing Time 0.032 seconds

Inhibitory Effects of Loranthus Parasiticus Extract on Carbohydrate Digestive Enzymes and Postprandial Hyperglycemia (상기생(Loranthus parasiticus) 추출물의 탄수화물 소화 효소 및 식후 고혈당 저해 효과)

  • Park, Min-Jung;Park, Jae-Eun;Han, Ji-Sook
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.18-25
    • /
    • 2020
  • This study was designed to investigate whether Loranthus parasiticus extract (LPE) could inhibit the activities of carbohydrate digestive enzymes and alleviate postprandial hyperglycemia in diabetic mice. Lyophilized L. parasiticus was extracted with 80% ethanol and concentrated. The inhibitory effects of LPE on carbohydrate digestive enzymes were evaluated by examining α-glucosidase and αamylase, and it was seen to inhibit the activities of both enzymes in a dose-dependent manner. More specifically, the IC50 values of LPE against α-glucosidase and α-amylase were 0.121±0.007 and 0.157±0.004 mg/ml, respectively, significantly lower than those of acarbose, showing that LPE has stronger inhibitory effects than the positive control. These results suggest that LPE strongly inhibits the activities of these digestive enzymes. Blood glucose levels in the control group of diabetic mice increased to 490.00±28.52 mg/dl and 474.60±25.30 mg/dl at 60 and 120 min after a meal, respectively. However, when LPE was added to starch, postprandial blood glucose levels were significantly reduced (463.0±23.73 and 418.5±24.50 mg/dl at 60 and 120 min, respectively; p<0.05). The area under the curve also significantly decreased following administration of LPE, with no cytotoxicity. These results therefore indicate that LPE could be used as an α-glucosidase and α-amylase inhibitor and delay carbohydrate digestion and, thus, glucose absorption after a meal.

Effects of dietary enzyme cocktail on growth performance, intestinal morphology, and nutrient digestibility of weaned pigs

  • Kim, Yunkang;Baek, Jangryeol;Jang, Kibeom;Kim, Junsu;Kim, Sheena;Mun, Daye;Kim, Byeonghyeon;Kim, Younghwa;Park, Juncheol;Choe, Jeehwan;Song, Minho
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.4
    • /
    • pp.513-518
    • /
    • 2017
  • Soybean, one of most widely used swine feed component in the world, contains non-starch polysaccharides (NSP). The digestive system of weaned pigs is not yet fully developed, and thus weaned pigs cannot easily digest diets based on corn and soybean meal. Dietary exogenous enzymes supplementation has been intensively investigated to assist digestion of anti-nutritional factors, such as NSP. This experiment was conducted to investigate the effects of dietary enzyme cocktail on growth performance, intestinal morphology, and nutrient digestibility of weaned pigs. A total 36 weaned pigs ($5.92{\pm}0.48kg\;BW$; 28 d old) were randomly allotted to 2 dietary treatments (3 pigs/pen, 6 replicates/treatment) in a randomized complete block design. The dietary treatments were a typical diet based on corn and soybean meal (CON) and CON with 0.05% enzyme cocktail (Cocktail; mixture of xylanase, ${\alpha}-amylase$, protease, ${\beta}-glucanase$, and pectinase). Pigs were fed their respective diets for 6 wk. Growth performance, morphology of ileum, apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of dry matter, crude protein, and energy of weaned pigs were measured. No significant differences (p > 0.05) were observed for growth performance for the duration of the experimental period, and morphology of ileum, and nutrient digestibility between CON and Cocktail treatment groups. Therefore, the results from the current study indicated that enzyme cocktail supplementation in diets had no influence on growth performance, intestinal morphology, and nutrient digestibility of weaned pigs.

Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle - A review

  • Park, Seung Ju;Beak, Seok-Hyeon;Jung, Da Jin Sol;Kim, Sang Yeob;Jeong, In Hyuk;Piao, Min Yu;Kang, Hyeok Joong;Fassah, Dilla Mareistia;Na, Sang Weon;Yoo, Seon Pil;Baik, Myunggi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.7
    • /
    • pp.1043-1061
    • /
    • 2018
  • Intramuscular fat (IMF) content in skeletal muscle including the longissimus dorsi muscle (LM), also known as marbling fat, is one of the most important factors determining beef quality in several countries including Korea, Japan, Australia, and the United States. Genetics and breed, management, and nutrition affect IMF deposition. Japanese Black cattle breed has the highest IMF content in the world, and Korean cattle (also called Hanwoo) the second highest. Here, we review results of research on genetic factors (breed and sex differences and heritability) that affect IMF deposition. Cattle management factors are also important for IMF deposition. Castration of bulls increases IMF deposition in most cattle breeds. The effects of several management factors, including weaning age, castration, slaughter weight and age, and environmental conditions on IMF deposition are also reviewed. Nutritional factors, including fat metabolism, digestion and absorption of feed, glucose/starch availability, and vitamin A, D, and C levels are important for IMF deposition. Manipulating IMF deposition through developmental programming via metabolic imprinting is a recently proposed nutritional method to change potential IMF deposition during the fetal and neonatal periods in rodents and domestic animals. Application of fetal nutritional programming to increase IMF deposition of progeny in later life is reviewed. The coordination of several factors affects IMF deposition. Thus, a combination of several strategies may be needed to manipulate IMF deposition, depending on the consumer's beef preference. In particular, stage-specific feeding programs with concentrate-based diets developed by Japan and Korea are described in this article.

Cyanidin-3-O-glucoside Ameliorates Postprandial Hyperglycemia in Diabetic Mice (당뇨 마우스에서 cyanidin-3-O-glucoside의 식후 고혈당 완화 효과)

  • Choi, Kyungha;Choi, Sung-In;Park, Mi Hwa;Han, Ji-Sook
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.32-37
    • /
    • 2017
  • Cyanidin-3-O-glucoside (C3G) shows anti-inflammatory and antioxidant effects; however, its effect on postprandial blood glucose levels remains unknown. Alpha-glucosidase inhibitors regulate post-prandial hyperglycemia by impeding carbohydrate digestion in the small intestine. Here, the effect of C3G on ${\alpha}-glucosidase$ and ${\alpha}-amylase$ inhibition and its ability to ameliorate postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice were evaluated. ICR normal and STZ-induced diabetic mice were orally administered soluble starch alone or with C3G or acarbose. The half-maximal inhibitory concentrations of C3G for ${\alpha}-glucosidase$ and ${\alpha}-amylase$ were 13.72 and $7.5{\mu}M$, respectively, suggesting that C3G was more effective than acarbose. The increase in postprandial blood glucose levels was more significantly reduced in the C3G groups than in the control group for both diabetic and normal mice. The area under the curve for the diabetic mice was significantly reduced following C3G administration. C3G may be a potent ${\alpha}-glucosidase$ inhibitor and may delay dietary carbohydrate absorption.

CHANGING THE ANIMAL WORLD WITH NIR : SMALL STEPS OR GIANT LEAPS\ulcorner

  • Flinn, Peter C.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1062-1062
    • /
    • 2001
  • The concept of “precision agriculture” or “site-specific farming” is usually confined to the fields of soil science, crop science and agronomy. However, because plants grow in soil, animals eat plants, and humans eat animal products, it could be argued (perhaps with some poetic licence) that the fields of feed quality, animal nutrition and animal production should also be considered in this context. NIR spectroscopy has proved over the last 20 years that it can provide a firm foundation for quality measurement across all of these fields, and with the continuing developments in instrumentation, computer capacity and software, is now a major cog in the wheel of precision agriculture. There have been a few giant leaps and a lot of small steps in the impact of NIR on the animal world. These have not been confined to the amazing advances in hardware and software, although would not have occurred without them. Rapid testing of forages, grains and mixed feeds by NIR for nutritional value to livestock is now commonplace in commercial laboratories world-wide. This would never have been possible without the pioneering work done by the USDA NIR Forage Research Network in the 1980's, following the landmark paper of Norris et al. in 1976. The advent of calibration transfer between instruments, algorithms which utilize huge databases for calibration and prediction, and the ability to directly scan whole grains and fresh forages can also be considered as major steps, if not leaps. More adventurous NIR applications have emerged in animal nutrition, with emphasis on estimating the functional properties of feeds, such as in vivo digestibility, voluntary intake, protein degradability and in vitro assays to simulate starch digestion. The potential to monitor the diets of grazing animals by using faecal NIR spectra is also now being realized. NIR measurements on animal carcasses and even live animals have also been attempted, with varying degrees of success, The use of discriminant analysis in these fields is proving a useful tool. The latest giant leap is likely to be the advent of relatively low-cost, portable and ultra-fast diode array NIR instruments, which can be used “on-site” and also be fitted to forage or grain harvesters. The fodder and livestock industries are no longer satisfied with what we once thought was revolutionary: a 2-3 day laboratory turnaround for fred quality testing. This means that the instrument needs to be taken to the samples rather than vice versa. Considerable research is underway in this area, but the challenge of calibration transfer and maintenance of instrument networks of this type remains. The animal world is currently facing its biggest challenges ever; animal welfare, alleged effects of animal products on human health, environmental and economic issues are difficult enough, but the current calamities of BSE and foot and mouth disease are “the last straw” NIR will not of course solve all these problems, but is already proving useful in some of these areas and will continue to do so.

  • PDF

The Inhibitory Effect of Cornus walteri Extract Against ${\alpha}-amylase$ (말채나무 추출물의 ${\alpha}-amylase$ 저해 활성)

  • Lim, Chae-Sung;Li, Chun-Ying;Kim, Yong-Mu;Lee, Wi-Young;Rhee, Hae-Ik
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.103-108
    • /
    • 2005
  • ${\alpha}-Amylase$ inhibitor is used to control blood glucose level by inhibiting starch digestion in the small intestine and delaying the absorption of glucose. In this study, we investigated the effect of the ethanol extracts from more than 1400 species of plants against ${\alpha}-amylase$ with the aim of developing a new ${\alpha}-amylase$ inhibitor. In the results, Cornus walteri extracts showed the highest inhibition activity. The inhibitory effect of Cornus walteri extract on the carbohydrate hydrolysis enzymes has different sensitivities against ${\alpha}-amylase$ from salivary and pancreatin and against ${\alpha}-glucosidase$ from yeast and porcine small intestine. In the study of inhibition kinetics of ${\alpha}-amylase$ and ${\alpha}-glucosidase$, Cornus walteri extract showed competitive inhibition against salivary and pancreatin while showing the combination of uncompetitive and noncompetitive inhibition against ${\alpha}-glucosidase$. The Cornus walteri extract was stable at acidic and thermal conditions. As for the blood glucose and body weight levels of Cornus walteri extract, we confirmed anti-hyperglycemic and anti-obesity effects. Also, in the investigation of the mRNA lever, Cornus walteri extract upregulated the level of GLUT4 mRNA in the quadriceps muscle.

Supplementing Maize or Soybean Hulls to Cattle Fed Rice Straw:Intake, Apparent Digestion, In situ Disappearance and Ruminal Dynamics

  • Von, Nguyen Tien;St. Louis, David G.;Orr, Adam I.;Rude, Brian J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.6
    • /
    • pp.807-817
    • /
    • 2008
  • Steers with ad libitum access to rice straw were assigned to four diets to evaluate the effects of maize or soybean hull supplementation on intake, in vivo digestibility, ruminal pH, VFA, ammonia-nitrogen ($NH_3-N$) and in situ ruminal disappearance of feed nutrients by cattle consuming rice straw. Supplement treatments were: no supplement (RS); soybean meal at 0.127% BW (SBM); cracked maize at 0.415% BW plus 0.044% BW soybean meal (MAIZE); or soybean hulls at 0.415% BW plus 0.044% BW soybean meal (HULLS). The MAIZE and HULLS diets were formulated to provide approximately 4 MJ of $NE_m$ per kg of diet. Rice straw DMI was not affected (p = 0.34) by supplement. Apparent dry matter (DM) digestibility was greater (p<0.001) for MAIZE and HULLS (56.6 and 60.0%, respectively) than for steers consuming SBM or RS (51.8 and 44.4%, respectively). Apparent NDF digestibility was greater (p<0.0004) for HULLS than MAIZE (61.7 vs. 58.0%, respectively) and apparent ADF digestibility was greater (p<0.0008) for HULLS than MAIZE (61.1 vs. 49.2%, respectively). There was no difference in apparent hemicellulose digestibility (p = 0.43). Analysis of ruminal fluid collected 0, 2, 4, 6, and 8 h post-feeding revealed ammonia-nitrogen was greatest (p<0.05) for steers on SBM and HULLS diets at 2 h (24.08 and 22.57 mg/dl, respectively) and total volatile fatty acids was greatest (p<0.05) for HULLS at 4 h (230 mM/L). In situ disappearance, measured at 0, 2, 4, 6, 8, 16 and 24 h, indicated that SBM, MAIZE and HULLS tended to enhance the digestibility of DM and fiber components of rice straw. In situ disappearance of rice straw DM was greatest for SBM and/or HULLS from 4 to 24 h (p = 0.03). Rice straw NDF and ADF disappearance was enhanced by supplementation from 16 to 24 h (p<0.02). Rice straw DM, NDF and ADF disappearances at 24 h were similar for MAIZE and HULLS treatments. When feeding cattle rice straw diets, energy and protein-based supplements are essential. This study showed that fiber-based supplements are just as, if not more, effective as starch-based supplements in rice straw utilization. This study shows that soybean hulls, in spite of their high fiber content, are as efficient as maize for supplementing rice straw primarily because fiber in soybean hulls is highly digestible as shown by in vivo digestibility and in situ disappearance.

Effects of purified lignin on in vitro rumen metabolism and growth performance of feedlot cattle

  • Wang, Yuxi;McAllister, Tim A.;Lora, Jairo H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.392-399
    • /
    • 2017
  • Objective: The objectives were to assess the effects of purified lignin from wheat straw (sodium hydroxide dehydrated lignin; SHDL) on in vitro ruminal fermentation and on the growth performance of feedlot cattle. Methods: In vitro experiments were conducted by incubating a timothy-alfalfa (50:50) forage mixture (48 h) and barley grain (24 h) with 0, 0.25, 0.5, 1.0, and 2.0 mg/mL of rumen fluid (equivalent to 0, 2, 4, 8, and 16 g SHDL/kg diet). Productions of $CH_4$ and total gas, volatile fatty acids, ammonia, dry matter (DM) disappearance (DMD) and digestion of neutral detergent fiber (NDF) or starch were measured. Sixty Hereford-Angus cross weaned steer calves were individually fed a typical barley silage-barley grain based total mixed ration and supplemented with SHDL at 0, 4, 8, and 16 g/kg DM for 70 (growing), 28 (transition), and 121 d (finishing) period. Cattle were slaughtered at the end of the experiment and carcass traits were assessed. Results: With forage, SHDL linearly (p<0.001) reduced 48-h in vitro DMD from 54.9% to 39.2%, NDF disappearance from 34.1% to 18.6% and the acetate: propionate ratio from 2.56 to 2.41, but linearly (p<0.001) increased $CH_4$ production from 9.5 to 12.4 mL/100 mg DMD. With barley grain, SHDL linearly increased (p<0.001) 24-h DMD from74.6% to 84.5%, but linearly (p<0.001) reduced $CH_4$ production from 5.6 to 4.2 mL/100 mg DMD and $NH_3$ accumulation from 9.15 to $4.49{\mu}mol/mL$. Supplementation of SHDL did not affect growth, but tended (p = 0.10) to linearly reduce feed intake, and quadratically increased (p = 0.059) feed efficiency during the finishing period. Addition of SHDL also tended (p = 0.098) to linearly increase the saleable meat yield of the carcass from 52.5% to 55.7%. Conclusion: Purified lignin used as feed additive has potential to improve feed efficiency for finishing feedlot cattle and carcass quality.

Alleviating Effects of Mulberry Fruit Extract on Postprandial Hyperglycemia in Streptozotocin-induced Diabetic Mice (STZ으로 유도된 당뇨 마우스에서 오디열매추출물의 식후 고혈당 완화 효과)

  • Choi, Kyung Ha;Kang, Ji-Hye;Han, Ji-Sook
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.921-927
    • /
    • 2016
  • Postprandial hyperglycemia is an early defect of type 2 diabetes and one of primary anti-diabetic targets. The alpha-glucosidase inhibitors regulate postprandial hyperglycemia by impeding the rate of carbohydrate (such as starch) digestion in the small intestine. This study was designed to investigate the inhibitory actions of mulberry fruit extract (MFE) on α-glucosidase and α-amylase activities, and its alleviating effect on postprandial hyperglycemia activities in vitro and in vivo. Male four-week old ICR mice and streptozotocin (STZ)-induced diabetic mice were treated with mulberry fruit extract. MFE showed strong inhibitory effects against α-glucosidase and α-amylase activities, with half-maximal inhibitory concentration (IC50) values of 0.16 and 0.14 mg/ml, respectively, and was more effective than acarbose, which was used as a positive control. The increase in postprandial blood glucose levels was more significantly attenuated in the MFE-administered group mice than in the control group mice of both STZ-induced diabetic and normal mice. Moreover, the area under the glucose response curve significantly decreased following MFE administration in diabetic mice. These results indicate that MFE may be a potent inhibitor of α-glucosidase and α-amylase, and helpful in suppressing postprandial hyperglycemia in diabetic mice. The mulberry fruit extracts may be considered as a potential candidate for the management of diabetes.

Effects of ${\beta}-Glucan$ from Agaricus blazei Murill on Blood Glucose and Lipid Composition in db/db Mice (db/db 마우스에서 아가리쿠스 버섯 ${\beta}-Glucan$이 혈당과 지질성분에 미치는 영향)

  • Choi, Jung-Mi;Koo, Sung-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1418-1425
    • /
    • 2000
  • Obesity and diabetes mellitus are associated with common pathogenic mechanism, and ${\beta}-glucan$ of Agaricus blazei Murill is potent inhibitor of intestinal ${\alpha}-glycosidase$ and inhibit the digestion of starch and sucrose in the small intestine. In this studies, there was observed the anti-hyperglycemic effect in obese diabetic mice(C57BLKsJ db/db), which were supplied Agaricus and Acarbose for 5 weeks. In db/db mice, food intake and body weight gain were decreased significantly in Agaricus groups(p<0.05). Also these group exhibited lower fasting serum glucose level compared with control group. HbA1c level, triglyceride level, total cholesterol level, HDL cholesterol level, LDL cholesterol level and VLDL cholesterol level were lowered in db/db mice. The activity of disaccharidases on proximal and distal segments of small intestine was decreased. In conclusion, it was assumed that ${\beta}-glucan$ of Agaricus blazei Murill has anti-hyperglycemic and anti-obesitic effects by reducing food intake and body weight gain, and also decreasing serum glucose and lipid level through inhibiting the activity of small intestinal disaccharidases.

  • PDF